Spaces:
Runtime error
Runtime error
File size: 15,079 Bytes
97069e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# Copyright 2020 Erik Härkönen. All rights reserved.
# This file is licensed to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. You may obtain a copy
# of the License at http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
# OF ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.
# Patch for broken CTRL+C handler
# https://github.com/ContinuumIO/anaconda-issues/issues/905
import os
os.environ['FOR_DISABLE_CONSOLE_CTRL_HANDLER'] = '1'
import numpy as np
import os
from pathlib import Path
import re
import sys
import datetime
import argparse
import torch
import json
from types import SimpleNamespace
import scipy
from scipy.cluster.vq import kmeans
from tqdm import trange
from netdissect.nethook import InstrumentedModel
from config import Config
from estimators import get_estimator
from models import get_instrumented_model
SEED_SAMPLING = 1
SEED_RANDOM_DIRS = 2
SEED_LINREG = 3
SEED_VISUALIZATION = 5
B = 20
n_clusters = 500
def get_random_dirs(components, dimensions):
gen = np.random.RandomState(seed=SEED_RANDOM_DIRS)
dirs = gen.normal(size=(components, dimensions))
dirs /= np.sqrt(np.sum(dirs**2, axis=1, keepdims=True))
return dirs.astype(np.float32)
# Compute maximum batch size for given VRAM and network
def get_max_batch_size(inst, device, layer_name=None):
inst.remove_edits()
# Reset statistics
torch.cuda.reset_max_memory_cached(device)
torch.cuda.reset_max_memory_allocated(device)
total_mem = torch.cuda.get_device_properties(device).total_memory
B_max = 20
# Measure actual usage
for i in range(2, B_max, 2):
z = inst.model.sample_latent(n_samples=i)
if layer_name:
inst.model.partial_forward(z, layer_name)
else:
inst.model.forward(z)
maxmem = torch.cuda.max_memory_allocated(device)
del z
if maxmem > 0.5*total_mem:
print('Batch size {:d}: memory usage {:.0f}MB'.format(i, maxmem / 1e6))
return i
return B_max
# Solve for directions in latent space that match PCs in activaiton space
def linreg_lstsq(comp_np, mean_np, stdev_np, inst, config):
print('Performing least squares regression', flush=True)
torch.manual_seed(SEED_LINREG)
np.random.seed(SEED_LINREG)
comp = torch.from_numpy(comp_np).float().to(inst.model.device)
mean = torch.from_numpy(mean_np).float().to(inst.model.device)
stdev = torch.from_numpy(stdev_np).float().to(inst.model.device)
n_samp = max(10_000, config.n) // B * B # make divisible
n_comp = comp.shape[0]
latent_dims = inst.model.get_latent_dims()
# We're looking for M s.t. M*P*G'(Z) = Z => M*A = Z
# Z = batch of latent vectors (n_samples x latent_dims)
# G'(Z) = batch of activations at intermediate layer
# A = P*G'(Z) = projected activations (n_samples x pca_coords)
# M = linear mapping (pca_coords x latent_dims)
# Minimization min_M ||MA - Z||_l2 rewritten as min_M.T ||A.T*M.T - Z.T||_l2
# to match format expected by pytorch.lstsq
# TODO: regression on pixel-space outputs? (using nonlinear optimizer)
# min_M lpips(G_full(MA), G_full(Z))
# Tensors to fill with data
# Dimensions other way around, so these are actually the transposes
A = np.zeros((n_samp, n_comp), dtype=np.float32)
Z = np.zeros((n_samp, latent_dims), dtype=np.float32)
# Project tensor X onto PCs, return coordinates
def project(X, comp):
N = X.shape[0]
K = comp.shape[0]
coords = torch.bmm(comp.expand([N]+[-1]*comp.ndim), X.view(N, -1, 1))
return coords.reshape(N, K)
for i in trange(n_samp // B, desc='Collecting samples', ascii=True):
z = inst.model.sample_latent(B)
inst.model.partial_forward(z, config.layer)
act = inst.retained_features()[config.layer].reshape(B, -1)
# Project onto basis
act = act - mean
coords = project(act, comp)
coords_scaled = coords / stdev
A[i*B:(i+1)*B] = coords_scaled.detach().cpu().numpy()
Z[i*B:(i+1)*B] = z.detach().cpu().numpy().reshape(B, -1)
# Solve least squares fit
# gelsd = divide-and-conquer SVD; good default
# gelsy = complete orthogonal factorization; sometimes faster
# gelss = SVD; slow but less memory hungry
M_t = scipy.linalg.lstsq(A, Z, lapack_driver='gelsd')[0] # torch.lstsq(Z, A)[0][:n_comp, :]
# Solution given by rows of M_t
Z_comp = M_t[:n_comp, :]
Z_mean = np.mean(Z, axis=0, keepdims=True)
return Z_comp, Z_mean
def regression(comp, mean, stdev, inst, config):
# Sanity check: verify orthonormality
M = np.dot(comp, comp.T)
if not np.allclose(M, np.identity(M.shape[0])):
det = np.linalg.det(M)
print(f'WARNING: Computed basis is not orthonormal (determinant={det})')
return linreg_lstsq(comp, mean, stdev, inst, config)
def compute(config, dump_name, instrumented_model):
global B
timestamp = lambda : datetime.datetime.now().strftime("%d.%m %H:%M")
print(f'[{timestamp()}] Computing', dump_name.name)
# Ensure reproducibility
torch.manual_seed(0) # also sets cuda seeds
np.random.seed(0)
# Speed up backend
torch.backends.cudnn.benchmark = True
has_gpu = torch.cuda.is_available()
device = torch.device('cuda' if has_gpu else 'cpu')
layer_key = config.layer
if instrumented_model is None:
inst = get_instrumented_model(config.model, config.output_class, layer_key, device)
model = inst.model
else:
print('Reusing InstrumentedModel instance')
inst = instrumented_model
model = inst.model
inst.remove_edits()
model.set_output_class(config.output_class)
# Regress back to w space
if config.use_w:
print('Using W latent space')
model.use_w()
inst.retain_layer(layer_key)
model.partial_forward(model.sample_latent(1), layer_key)
sample_shape = inst.retained_features()[layer_key].shape
sample_dims = np.prod(sample_shape)
print('Feature shape:', sample_shape)
input_shape = inst.model.get_latent_shape()
input_dims = inst.model.get_latent_dims()
config.components = min(config.components, sample_dims)
transformer = get_estimator(config.estimator, config.components, config.sparsity)
X = None
X_global_mean = None
# Figure out batch size if not provided
B = config.batch_size or get_max_batch_size(inst, device, layer_key)
# Divisible by B (ignored in output name)
N = config.n // B * B
# Compute maximum batch size based on RAM + pagefile budget
target_bytes = 20 * 1_000_000_000 # GB
feat_size_bytes = sample_dims * np.dtype('float64').itemsize
N_limit_RAM = np.floor_divide(target_bytes, feat_size_bytes)
if not transformer.batch_support and N > N_limit_RAM:
print('WARNING: estimator does not support batching, ' \
'given config will use {:.1f} GB memory.'.format(feat_size_bytes / 1_000_000_000 * N))
# 32-bit LAPACK gets very unhappy about huge matrices (in linalg.svd)
if config.estimator == 'ica':
lapack_max_N = np.floor_divide(np.iinfo(np.int32).max // 4, sample_dims) # 4x extra buffer
if N > lapack_max_N:
raise RuntimeError(f'Matrices too large for ICA, please use N <= {lapack_max_N}')
print('B={}, N={}, dims={}, N/dims={:.1f}'.format(B, N, sample_dims, N/sample_dims), flush=True)
# Must not depend on chosen batch size (reproducibility)
NB = max(B, max(2_000, 3*config.components)) # ipca: as large as possible!
samples = None
if not transformer.batch_support:
samples = np.zeros((N + NB, sample_dims), dtype=np.float32)
torch.manual_seed(config.seed or SEED_SAMPLING)
np.random.seed(config.seed or SEED_SAMPLING)
# Use exactly the same latents regardless of batch size
# Store in main memory, since N might be huge (1M+)
# Run in batches, since sample_latent() might perform Z -> W mapping
n_lat = ((N + NB - 1) // B + 1) * B
latents = np.zeros((n_lat, *input_shape[1:]), dtype=np.float32)
with torch.no_grad():
for i in trange(n_lat // B, desc='Sampling latents'):
latents[i*B:(i+1)*B] = model.sample_latent(n_samples=B).cpu().numpy()
# Decomposition on non-Gaussian latent space
samples_are_latents = layer_key in ['g_mapping', 'style'] and inst.model.latent_space_name() == 'W'
canceled = False
try:
X = np.ones((NB, sample_dims), dtype=np.float32)
action = 'Fitting' if transformer.batch_support else 'Collecting'
for gi in trange(0, N, NB, desc=f'{action} batches (NB={NB})', ascii=True):
for mb in range(0, NB, B):
z = torch.from_numpy(latents[gi+mb:gi+mb+B]).to(device)
if samples_are_latents:
# Decomposition on latents directly (e.g. StyleGAN W)
batch = z.reshape((B, -1))
else:
# Decomposition on intermediate layer
with torch.no_grad():
model.partial_forward(z, layer_key)
# Permuted to place PCA dimensions last
batch = inst.retained_features()[layer_key].reshape((B, -1))
space_left = min(B, NB - mb)
X[mb:mb+space_left] = batch.cpu().numpy()[:space_left]
if transformer.batch_support:
if not transformer.fit_partial(X.reshape(-1, sample_dims)):
break
else:
samples[gi:gi+NB, :] = X.copy()
except KeyboardInterrupt:
if not transformer.batch_support:
sys.exit(1) # no progress yet
dump_name = dump_name.parent / dump_name.name.replace(f'n{N}', f'n{gi}')
print(f'Saving current state to "{dump_name.name}" before exiting')
canceled = True
if not transformer.batch_support:
X = samples # Use all samples
X_global_mean = X.mean(axis=0, keepdims=True, dtype=np.float32) # TODO: activations surely multi-modal...!
X -= X_global_mean
print(f'[{timestamp()}] Fitting whole batch')
t_start_fit = datetime.datetime.now()
transformer.fit(X)
print(f'[{timestamp()}] Done in {datetime.datetime.now() - t_start_fit}')
assert np.all(transformer.transformer.mean_ < 1e-3), 'Mean of normalized data should be zero'
else:
X_global_mean = transformer.transformer.mean_.reshape((1, sample_dims))
X = X.reshape(-1, sample_dims)
X -= X_global_mean
X_comp, X_stdev, X_var_ratio = transformer.get_components()
assert X_comp.shape[1] == sample_dims \
and X_comp.shape[0] == config.components \
and X_global_mean.shape[1] == sample_dims \
and X_stdev.shape[0] == config.components, 'Invalid shape'
# 'Activations' are really latents in a secondary latent space
if samples_are_latents:
Z_comp = X_comp
Z_global_mean = X_global_mean
else:
Z_comp, Z_global_mean = regression(X_comp, X_global_mean, X_stdev, inst, config)
# Normalize
Z_comp /= np.linalg.norm(Z_comp, axis=-1, keepdims=True)
# Random projections
# We expect these to explain much less of the variance
random_dirs = get_random_dirs(config.components, np.prod(sample_shape))
n_rand_samples = min(5000, X.shape[0])
X_view = X[:n_rand_samples, :].T
assert np.shares_memory(X_view, X), "Error: slice produced copy"
X_stdev_random = np.dot(random_dirs, X_view).std(axis=1)
# Inflate back to proper shapes (for easier broadcasting)
X_comp = X_comp.reshape(-1, *sample_shape)
X_global_mean = X_global_mean.reshape(sample_shape)
Z_comp = Z_comp.reshape(-1, *input_shape)
Z_global_mean = Z_global_mean.reshape(input_shape)
# Compute stdev in latent space if non-Gaussian
lat_stdev = np.ones_like(X_stdev)
if config.use_w:
samples = model.sample_latent(5000).reshape(5000, input_dims).detach().cpu().numpy()
coords = np.dot(Z_comp.reshape(-1, input_dims), samples.T)
lat_stdev = coords.std(axis=1)
os.makedirs(dump_name.parent, exist_ok=True)
np.savez_compressed(dump_name, **{
'act_comp': X_comp.astype(np.float32),
'act_mean': X_global_mean.astype(np.float32),
'act_stdev': X_stdev.astype(np.float32),
'lat_comp': Z_comp.astype(np.float32),
'lat_mean': Z_global_mean.astype(np.float32),
'lat_stdev': lat_stdev.astype(np.float32),
'var_ratio': X_var_ratio.astype(np.float32),
'random_stdevs': X_stdev_random.astype(np.float32),
})
if canceled:
sys.exit(1)
# Don't shutdown if passed as param
if instrumented_model is None:
inst.close()
del inst
del model
del X
del X_comp
del random_dirs
del batch
del samples
del latents
torch.cuda.empty_cache()
# Return cached results or commpute if needed
# Pass existing InstrumentedModel instance to reuse it
def get_or_compute(config, model=None, submit_config=None, force_recompute=False):
if submit_config is None:
wrkdir = str(Path(__file__).parent.resolve())
submit_config = SimpleNamespace(run_dir_root = wrkdir, run_dir = wrkdir)
# Called directly by run.py
return _compute(submit_config, config, model, force_recompute)
def _compute(submit_config, config, model=None, force_recompute=False):
basedir = Path(submit_config.run_dir)
outdir = basedir / 'out'
if config.n is None:
raise RuntimeError('Must specify number of samples with -n=XXX')
if model and not isinstance(model, InstrumentedModel):
raise RuntimeError('Passed model has to be wrapped in "InstrumentedModel"')
if config.use_w and not 'StyleGAN' in config.model:
raise RuntimeError(f'Cannot change latent space of non-StyleGAN model {config.model}')
transformer = get_estimator(config.estimator, config.components, config.sparsity)
dump_name = "{}-{}_{}_{}_n{}{}{}.npz".format(
config.model.lower(),
config.output_class.replace(' ', '_'),
config.layer.lower(),
transformer.get_param_str(),
config.n,
'_w' if config.use_w else '',
f'_seed{config.seed}' if config.seed else ''
)
dump_path = basedir / 'cache' / 'components' / dump_name
if not dump_path.is_file() or force_recompute:
print('Not cached')
t_start = datetime.datetime.now()
compute(config, dump_path, model)
print('Total time:', datetime.datetime.now() - t_start)
return dump_path |