File size: 4,668 Bytes
2cd9d38 ad09938 2cd9d38 ad09938 2cd9d38 ad09938 2cd9d38 ad09938 2cd9d38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
import numpy as np
import torch
from PIL import Image
from transformers import SamModel, SamProcessor
from gradio_image_prompter import ImagePrompter
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
slimsam_model = SamModel.from_pretrained("nielsr/slimsam-50-uniform").to(device)
slimsam_processor = SamProcessor.from_pretrained("nielsr/slimsam-50-uniform")
def sam_box_inference(image, model, x_min, y_min, x_max, y_max):
inputs = sam_processor(
Image.fromarray(image),
input_boxes=[[[[x_min, y_min, x_max, y_max]]]],
return_tensors="pt"
).to(device)
with torch.no_grad():
outputs = model(**inputs)
mask = sam_processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
mask = mask[np.newaxis, ...]
print(mask)
print(mask.shape)
return [(mask, "mask")]
def sam_point_inference(image, model, x, y):
inputs = sam_processor(
image,
input_points=[[[x, y]]],
return_tensors="pt").to(device)
with torch.no_grad():
outputs = sam_model(**inputs)
mask = sam_processor.post_process_masks(
outputs.pred_masks.cpu(),
inputs["original_sizes"].cpu(),
inputs["reshaped_input_sizes"].cpu()
)[0][0][0].numpy()
mask = mask[np.newaxis, ...]
print(type(mask))
print(mask.shape)
return [(mask, "mask")]
def infer_point(img):
if img is None:
gr.Error("Please upload an image and select a point.")
if img["background"] is None:
gr.Error("Please upload an image and select a point.")
# background (original image) layers[0] ( point prompt) composite (total image)
image = img["background"].convert("RGB")
point_prompt = img["layers"][0]
total_image = img["composite"]
img_arr = np.array(point_prompt)
if not np.any(img_arr):
gr.Error("Please select a point on top of the image.")
else:
nonzero_indices = np.nonzero(img_arr)
img_arr = np.array(point_prompt)
nonzero_indices = np.nonzero(img_arr)
center_x = int(np.mean(nonzero_indices[1]))
center_y = int(np.mean(nonzero_indices[0]))
print("Point inference returned.")
return ((image, sam_point_inference(image, slimsam_model, center_x, center_y)),
(image, sam_point_inference(image, sam_model, center_x, center_y)))
def infer_box(prompts):
# background (original image) layers[0] ( point prompt) composite (total image)
image = prompts["image"]
if image is None:
gr.Error("Please upload an image and draw a box before submitting")
points = prompts["points"][0]
if points is None:
gr.Error("Please draw a box before submitting.")
print(points)
# x_min = points[0] x_max = points[3] y_min = points[1] y_max = points[4]
return ((image, sam_box_inference(image, slimsam_model, points[0], points[1], points[3], points[4])),
(image, sam_box_inference(image, sam_model, points[0], points[1], points[3], points[4])))
with gr.Blocks(title="SlimSAM") as demo:
gr.Markdown("# SlimSAM")
gr.Markdown("SlimSAM is the pruned-distilled version of SAM that is smaller.")
gr.Markdown("In this demo, you can compare SlimSAM and SAM outputs in point and box prompts.")
with gr.Tab("**Box Prompt**"):
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown("To try box prompting, simply upload and image and draw a box on it.")
with gr.Row():
with gr.Column():
im = ImagePrompter()
btn = gr.Button("Submit")
with gr.Column():
output_box_slimsam = gr.AnnotatedImage(label="SlimSAM Output")
output_box_sam = gr.AnnotatedImage(label="SAM Output")
btn.click(infer_box, inputs=im, outputs=[output_box_slimsam, output_box_sam])
with gr.Tab("**Point Prompt**"):
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown("To try point prompting, simply upload and image and leave a dot on it.")
with gr.Row():
with gr.Column():
im = gr.ImageEditor(
type="pil",
)
with gr.Column():
output_slimsam = gr.AnnotatedImage(label="SlimSAM Output")
output_sam = gr.AnnotatedImage(label="SAM Output")
im.change(infer_point, inputs=im, outputs=[output_slimsam, output_sam])
demo.launch(debug=True) |