Spaces:
Running
Running
import torch | |
import json | |
import numpy as np | |
from transformers import (BertForMaskedLM, BertTokenizer) | |
modelpath = 'bert-large-uncased-whole-word-masking/' | |
tokenizer = BertTokenizer.from_pretrained(modelpath) | |
model = BertForMaskedLM.from_pretrained(modelpath) | |
model.eval() | |
id_of_mask = 103 | |
def get_embeddings(sentence): | |
with torch.no_grad(): | |
processed_sentence = '' + sentence + '' | |
tokenized = tokenizer.encode(processed_sentence) | |
input_ids = torch.tensor(tokenized).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
index_of_mask = tokenized.index(id_of_mask) | |
# batch, tokens, vocab_size | |
prediction_scores = outputs[0] | |
return prediction_scores[0][index_of_mask].cpu().numpy().tolist() | |
def get_embedding_group(tokens): | |
print(tokens) | |
mutated = [] | |
for i, v in enumerate(tokens): | |
array = tokens.copy() | |
array[i] = id_of_mask | |
mutated.append(array) | |
print('Running model') | |
output = model(torch.tensor(mutated))[0] | |
print('Converting to list') | |
array = output.detach().numpy().tolist() | |
print('Constructing out array') | |
# only grab mask embedding | |
# can probaby do this in torch? not sure how | |
out = [] | |
for i, v in enumerate(array): | |
out.append(v[i]) | |
return out | |
def get_embedding_group_top(tokens): | |
sents = get_embedding_group(tokens) | |
out = [] | |
print('get_embedding_group done') | |
for sent_i, sent in enumerate(sents): | |
all_tokens = [] | |
for i, v in enumerate(sent): | |
all_tokens.append({'i': i, 'v': float(v)}) | |
all_tokens.sort(key=lambda d: d['v'], reverse=True) | |
topTokens = all_tokens[:90] | |
sum = np.sum(np.exp(sent)) | |
for i, token in enumerate(topTokens): | |
token['p'] = float(np.exp(token['v'])/sum) | |
out.append(all_tokens[:90]) | |
return out | |
# Runs one token at a time to stay under memory limit | |
def get_embedding_group_low_mem(tokens): | |
print(tokens) | |
out = [] | |
for index_of_mask, v in enumerate(tokens): | |
array = tokens.copy() | |
array[index_of_mask] = id_of_mask | |
input_ids = torch.tensor(array).unsqueeze(0) | |
prediction_scores = model(input_ids)[0] | |
out.append(prediction_scores[0][index_of_mask].detach().numpy()) | |
return out | |
def get_embedding_group_top_low_mem(tokens): | |
sents = get_embedding_group_low_mem(tokens) | |
out = [] | |
print('get_embedding_group done') | |
for sent_i, sent in enumerate(sents): | |
all_tokens = [] | |
for i, v in enumerate(sent): | |
all_tokens.append({'i': i, 'v': float(v)}) | |
all_tokens.sort(key=lambda d: d['v'], reverse=True) | |
topTokens = all_tokens[:90] | |
sum = np.sum(np.exp(sent)) | |
for i, token in enumerate(topTokens): | |
token['p'] = float(np.exp(token['v'])/sum) | |
out.append(all_tokens[:90]) | |
return out | |
import os | |
import shutil | |
# Free up memory | |
if os.environ.get('REMOVE_WEIGHTS') == 'TRUE': | |
print('removing bert-large-uncased-whole-word-masking from filesystem') | |
shutil.rmtree('bert-large-uncased-whole-word-masking', ignore_errors=True) | |