Spaces:
Running
Running
File size: 5,017 Bytes
743c16c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
!(async function(){
var data = await util.getFile('cns-cache/model_grid_test_accuracy.json')
data = data
.filter(d => util.epsilonExtent[1] <= d.epsilon && d.epsilon <= util.epsilonExtent[0])
.filter(d => d.dataset_size > 1000)
// .filter(d => d.dataset_size > 4000)
// console.log(data)
var bySize = d3.nestBy(data, d => d.dataset_size)
bySize.forEach((d, i) => {
d.dataset_size = d.key
d.color = d3.interpolatePlasma(.84- i/6)
if (d.key == 60000){
d3.selectAll('.tp60').st({background: d.color, padding: 2})
}
if (d.key == 7500){
d3.selectAll('.tp75').st({background: d.color, color: '#fff', padding: 2})
}
d.label = {
60000: {pos: [7, 11], textAnchor: 'middle', text: '60,000'},
30000: {pos: [7, 11], textAnchor: 'middle', text: '30,000'},
15000: {pos: [7, -5], textAnchor: 'start', text: '15,000'},
7500: {pos: [0, 8], textAnchor: 'start', text: '7,500'},
// 3750: {pos: [0, 14], textAnchor: 'end', text: '3,750 training points'},
3750: {pos: [-34, 10], textAnchor: 'start', text: '3,750'},
2000: {pos: [-50, 10], textAnchor: 'end', text: '2,000 training points'},
}[d.key]
d.forEach(e => e.size = d)
})
var sel = d3.select('.accuracy-v-privacy-dataset_size').html('')
.at({role: 'graphics-document', 'aria-label': `High privacy and accuracy requires more training data. Line chart showing too much differential privacy without enough data decreases accuracy.`})
sel.append('div.chart-title').text('High privacy and accuracy requires more training data')
var c = d3.conventions({
sel,
height: 400,
margin: {bottom: 125, top: 5},
layers: 'sd',
})
c.x = d3.scaleLog().domain(util.epsilonExtent).range(c.x.range())
c.xAxis = d3.axisBottom(c.x).tickFormat(d => {
var rv = d + ''
if (rv.split('').filter(d => d !=0 && d != '.')[0] == 1) return rv
})
c.yAxis.tickFormat(d => d3.format('.0%')(d))//.ticks(8)
d3.drawAxis(c)
util.addAxisLabel(c, 'Higher Privacy →', 'Test Accuracy')
util.ggPlotBg(c, false)
c.layers[1].append('div')
.st({fontSize: 12, color: '#555', width: 120*2, textAlign: 'center', lineHeight: '1.3em'})
.translate([c.width/2 - 120, c.height + 70])
.html('in ε, a <a href="https://desfontain.es/privacy/differential-privacy-in-more-detail.html">measure</a> of how much modifying a single training point can change the model (models with a lower ε are more private)')
c.svg.selectAll('.y .tick').filter(d => d == .9)
.select('text').st({fontWeight: 600}).parent()
.append('path')
.at({stroke: '#000', strokeDasharray: '2 2', d: 'M 0 0 H ' + c.width})
var line = d3.line()
.x(d => c.x(d.epsilon))
.y(d => c.y(d.accuracy))
.curve(d3.curveMonotoneX)
var lineSel = c.svg.append('g').appendMany('path.accuracy-line', bySize)
.at({
d: line,
fill: 'none',
})
.st({ stroke: d => d.color, })
.on('mousemove', setActiveDigit)
var circleSel = c.svg.append('g')
.appendMany('g.accuracy-circle', data)
.translate(d => [c.x(d.epsilon), c.y(d.accuracy)])
.on('mousemove', setActiveDigit)
// .call(d3.attachTooltip)
circleSel.append('circle')
.at({r: 4, stroke: '#fff'})
.st({fill: d => d.size.color })
var labelSel = c.svg.appendMany('g.accuracy-label', bySize)
.translate(d => [c.x(d[0].epsilon), c.y(d[0].accuracy)])
labelSel.append('text')
.filter(d => d.label)
.translate(d => d.label.pos)
.st({fill: d => d.color, fontWeight: 400})
.at({textAnchor: d => d.label.textAnchor, fontSize: 14, fill: '#000', dy: '.66em'})
.text(d => d.label.text)
.filter(d => d.key == 2000)
.text('')
.tspans(d => d.label.text.split(' '))
c.svg.append('text.annotation')
.translate([225, 106])
.tspans(d3.wordwrap('With limited data, adding more differential privacy improves accuracy...', 25), 12)
c.svg.append('text.annotation')
.translate([490, 230])
.tspans(d3.wordwrap(`...until it doesn't`, 20))
// setActiveDigit({dataset_size: 60000})
function setActiveDigit({dataset_size}){
lineSel
.classed('active', 0)
.filter(d => d.dataset_size == dataset_size)
.classed('active', 1)
.raise()
circleSel
.classed('active', 0)
.filter(d => d.dataset_size == dataset_size)
.classed('active', 1)
.raise()
labelSel
.classed('active', 0)
.filter(d => d.dataset_size == dataset_size)
.classed('active', 1)
}
})()
// aVal: 0.5
// accuracy: 0.8936
// accuracy_0: 0.9663265306122449
// accuracy_1: 0.9806167400881057
// accuracy_2: 0.9011627906976745
// accuracy_3: 0.8633663366336634
// accuracy_4: 0.8859470468431772
// accuracy_5: 0.8733183856502242
// accuracy_6: 0.9384133611691023
// accuracy_7: 0.8657587548638133
// accuracy_8: 0.8059548254620124
// accuracy_9: 0.8434093161546086
// dataset_size: 60000
// epochs: 4
// epsilon: 0.19034890168775565
// l2_norm_clip: 0.75
// noise_multiplier: 2.6
|