File size: 5,017 Bytes
7341022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
!(async function(){
  var data = await util.getFile('cns-cache/model_grid_test_accuracy.json')

  data = data
    .filter(d => util.epsilonExtent[1] <= d.epsilon && d.epsilon <= util.epsilonExtent[0])
    .filter(d => d.dataset_size > 1000)

    // .filter(d => d.dataset_size > 4000)

  // console.log(data)

  var bySize = d3.nestBy(data, d => d.dataset_size)
  bySize.forEach((d, i) => {
    d.dataset_size = d.key

    d.color = d3.interpolatePlasma(.84- i/6)
    if (d.key == 60000){
      d3.selectAll('.tp60').st({background: d.color, padding: 2})
    }
    if (d.key == 7500){
      d3.selectAll('.tp75').st({background: d.color, color: '#fff', padding: 2})
    }

    d.label = {
      60000: {pos: [7, 11], textAnchor: 'middle', text: '60,000'},
      30000: {pos: [7, 11], textAnchor: 'middle', text: '30,000'},
      15000: {pos: [7, -5], textAnchor: 'start', text: '15,000'},
      7500: {pos: [0, 8], textAnchor: 'start', text: '7,500'},
      // 3750: {pos: [0, 14], textAnchor: 'end', text: '3,750 training points'},
      3750: {pos: [-34, 10], textAnchor: 'start', text: '3,750'},
      2000: {pos: [-50, 10], textAnchor: 'end', text: '2,000 training points'},
    }[d.key]

    d.forEach(e => e.size = d)
  })

  var sel = d3.select('.accuracy-v-privacy-dataset_size').html('')
    .at({role: 'graphics-document', 'aria-label': `High privacy and accuracy requires more training data. Line chart showing too much differential privacy without enough data decreases accuracy.`})

  sel.append('div.chart-title').text('High privacy and accuracy requires more training data')

  var c = d3.conventions({
    sel,
    height: 400,
    margin: {bottom: 125, top: 5},
    layers: 'sd',
  })

  c.x = d3.scaleLog().domain(util.epsilonExtent).range(c.x.range())
  c.xAxis = d3.axisBottom(c.x).tickFormat(d => {
    var rv = d + ''
    if (rv.split('').filter(d => d !=0 && d != '.')[0] == 1) return rv
  })

  c.yAxis.tickFormat(d => d3.format('.0%')(d))//.ticks(8)

  d3.drawAxis(c)
  util.addAxisLabel(c, 'Higher Privacy →', 'Test Accuracy')
  util.ggPlotBg(c, false)
  c.layers[1].append('div')
    .st({fontSize: 12, color: '#555', width: 120*2, textAlign: 'center', lineHeight: '1.3em'})
    .translate([c.width/2 - 120, c.height + 70])
    .html('in ε, a <a href="https://desfontain.es/privacy/differential-privacy-in-more-detail.html">measure</a> of how much modifying a single training point can change the model (models with a lower ε are more private)')


  c.svg.selectAll('.y .tick').filter(d => d == .9)
    .select('text').st({fontWeight: 600}).parent()
    .append('path')
    .at({stroke: '#000', strokeDasharray: '2 2', d: 'M 0 0 H ' + c.width})

  var line = d3.line()
    .x(d => c.x(d.epsilon))
    .y(d => c.y(d.accuracy))
    .curve(d3.curveMonotoneX)


  var lineSel = c.svg.append('g').appendMany('path.accuracy-line', bySize)
    .at({
      d: line,
      fill: 'none',
    })
    .st({ stroke: d => d.color, })
    .on('mousemove', setActiveDigit)

  var circleSel = c.svg.append('g')
    .appendMany('g.accuracy-circle', data)
    .translate(d => [c.x(d.epsilon), c.y(d.accuracy)])
    .on('mousemove', setActiveDigit)
    // .call(d3.attachTooltip)

  circleSel.append('circle')
    .at({r: 4, stroke: '#fff'})
    .st({fill: d => d.size.color })


  var labelSel = c.svg.appendMany('g.accuracy-label', bySize)
    .translate(d => [c.x(d[0].epsilon), c.y(d[0].accuracy)])
  labelSel.append('text')
    .filter(d => d.label)
    .translate(d => d.label.pos)
    .st({fill: d => d.color, fontWeight: 400})
    .at({textAnchor: d => d.label.textAnchor, fontSize: 14, fill: '#000', dy: '.66em'})
    .text(d => d.label.text)
    .filter(d => d.key == 2000)
    .text('')
    .tspans(d => d.label.text.split(' '))


  c.svg.append('text.annotation')
    .translate([225, 106])
    .tspans(d3.wordwrap('With limited data, adding more differential privacy improves accuracy...', 25), 12)

  c.svg.append('text.annotation')
    .translate([490, 230])
    .tspans(d3.wordwrap(`...until it doesn't`, 20))

  // setActiveDigit({dataset_size: 60000})
  function setActiveDigit({dataset_size}){
    lineSel
      .classed('active', 0)
      .filter(d => d.dataset_size == dataset_size)
      .classed('active', 1)
      .raise()

    circleSel
      .classed('active', 0)
      .filter(d => d.dataset_size == dataset_size)
      .classed('active', 1)
      .raise()

    labelSel
      .classed('active', 0)
      .filter(d => d.dataset_size == dataset_size)
      .classed('active', 1)
  }
})()




// aVal: 0.5
// accuracy: 0.8936
// accuracy_0: 0.9663265306122449
// accuracy_1: 0.9806167400881057
// accuracy_2: 0.9011627906976745
// accuracy_3: 0.8633663366336634
// accuracy_4: 0.8859470468431772
// accuracy_5: 0.8733183856502242
// accuracy_6: 0.9384133611691023
// accuracy_7: 0.8657587548638133
// accuracy_8: 0.8059548254620124
// accuracy_9: 0.8434093161546086
// dataset_size: 60000
// epochs: 4
// epsilon: 0.19034890168775565
// l2_norm_clip: 0.75
// noise_multiplier: 2.6