File size: 10,967 Bytes
7341022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
window.state = window.state || {
  scoreSteps: 101,
  nParams: 11,
  nRandLines: 50,
  nMaxRand: 0,
  nBatches: 4,
  learningRate: 22,
}


window.pointData = window.pointData || d3.range(100).map(i => {
  var color = i % 2 ? 0 : 1
  var color0 = color
  var color1 = color

  var σ = .1
  var μ = .2
  if (color){
    var x = d3.randomNormal(1 - μ, σ)()
    var y = d3.randomNormal(1 - μ, σ*1)()
  } else {
    var x = d3.randomNormal(μ, σ)()
    var y = d3.randomNormal(μ, σ*1)()
    y = d3.clamp(0, y, .4)
  }

  x = d3.clamp(.03, x, .97)
  y = d3.clamp(.03, y, .97)

  var bucketX = x*(state.nParams - 1)

  if (i == 51){
    x = .25
    y = .55
    color = 0
    color0 = 0
    color1 = 1
  }

  return {i, x, y, bucketX, color, color0, color1}
})

var updateAllFns = []
var updateAll = () => updateAllFns.forEach(fn => fn())

var updateCircleFns = []
var updateCircle = (d) => updateCircleFns.forEach(fn => fn(d))

var sel = d3.select('.epoch-graph').html('')
  .st({marginTop: 30})
  .at({role: 'graphics-document', 'aria-label': `Grid of charts showing a simple 2d classifer being trained over four epochs. Changing a single outlier point from red to blue makes a big difference in the final model.`})

var dbSel = d3.select('.decision-boundry').html('').append('div')
  .at({role: 'graphics-document', 'aria-label': `Slides to control the level clipping and noise applied the gradient at each step. Increasing the noise enough makes the decision boundries for the models trained on the red and blue outliers overlap.`})

var colorTypes = [{key: 'color1'}, {key: 'color0'}]
sel.appendMany('div', colorTypes)
  .each(drawColorType)

drawBatch(
  dbSel.append('div').parent().append('div'), 
  3, 
  colorTypes[0], 
  colorTypes[1]
)


function drawColorType(ct){
  function calcBatches(){
    var buckets = d3.nestBy(pointData, d => Math.floor(d.bucketX))
    buckets = _.sortBy(buckets, d => +d.key)

    pointData.forEach(d => {
      d.bucketX = d.x*(state.nParams - 1)
    })

    buckets.forEach((bucket, i) => {
      bucket.i = i
      bucket.x = +bucket.key

      bucket.pointData = pointData.filter(d => Math.abs(d.bucketX - bucket.key) < 1)

      bucket.scores = d3.range(state.scoreSteps).map(i => {
        var y = i/(state.scoreSteps - 1)
        var pad = 0

        var score = d3.sum(bucket.pointData, (d, i) => {
          // return d[ct.key] == 0 ? d.y < y - pad : d.y > y + pad

          var dif = 1 - Math.abs(d.bucketX - bucket.x)
          dif = Math.min(dif, .5)
          if (d[ct.key] == 0){
            return d.y < y - pad ? dif : -dif
          } else {
            return d.y > y + pad ? dif : -dif
          }
        })

        return {y, i, score}
      })

      bucket.best = _.maxBy(bucket.scores, d => d.score)

      bucket.scores.forEach(score => {
        var nextScoreIndex = score.i
        var charge = 0

        for (var j = 0; j < state.learningRate; j++){
          var dif = bucket.best.score - bucket.scores[nextScoreIndex]?.score
          charge += dif || 5
          if (bucket.scores[nextScoreIndex | 0].score == bucket.best.score){
            j = state.learningRate
          } else if (charge > 2) {
            nextScoreIndex += nextScoreIndex < bucket.best.i ? 1 : -1
            charge = 0
          }
        }

        score.nextScoreIndex = nextScoreIndex
      })

      bucket.x = (bucket.i +.5)/(state.nParams - 1)
    })

    var rng = new alea(ct.key)

    // random lines x batches x buckets
    var randLines = d3.range(state.nRandLines).map(() => {
      return [buckets.map(d => Math.floor(d.x*state.scoreSteps))]
    })

    function calcNextBatch(){
      randLines.forEach(line => {
        var next = _.last(line).map((scoreIndex, i) => {
          var randInt = Math.round((rng() - .5)*state.nMaxRand)
          return d3.clamp(
            0, 
            buckets[i].scores[scoreIndex | 0].nextScoreIndex + randInt, 
            state.scoreSteps - 1)
        })

        line.push(next)
      })
    }
    d3.range(state.nBatches - 1).forEach(calcNextBatch)

    ct.buckets = buckets
    ct.randLines = randLines
  }
  calcBatches()

  var sel = d3.select(this)

  var render = (function(){
    ct.renderFns = []

    sel
      .append('div.chart-title').text(ct.key == 'color1' ? 'Training a model with an isolated red point' : 'Training a model with an isolated blue point')
      .st({marginLeft: 10, marginBottom: -18, marginTop: -5})
      .parent()
      .appendMany('div', ct.randLines[0])
      .st({display: 'inline-block'})
      .each(function(d, i){ drawBatch(d3.select(this), i, ct)})

    return () => ct.renderFns.forEach(d => d())
  })()

  updateAllFns.push(() => {
    calcBatches()
    render()
  })
}


function drawBatch(sel, batchIndex, ct, ct2){

  var size = ct2 ? 300 : 150
  var mScale = ct2 ? 0 : 1
  var c = d3.conventions({
    sel,
    width: size,
    height: size,
    margin: {left: 10*mScale, right: 10*mScale, top: 20*mScale, bottom: ct2 ? 50 : 20},
    layers: 'scsd',
  })

  var divSel = c.layers[3].st({pointerEvents: 'none'})

  c.layers[0].append('rect')
    .at({width: c.width, height: c.height, fill: '#efefef'})

  c.svg = c.layers[2]

  c.svg.append('rect')
    .at({width: c.width, height: c.height, fill: 'rgba(0,0,0,0)'})

  c.svg.append('text')
    .text('Step ' + (batchIndex + 1))
    .translate([c.width/2, c.height + 13])
    .at({textAnchor: 'middle', fontSize: 10, fill: '#999'})
    .st({opacity: ct2 ? 0 : 1})

  c.x.domain([0, 1]).clamp(1)
  c.y.domain([0, 1]).clamp(1)

  var drag = d3.drag()
    .on('start', () => c.svg.classed('dragging', 1))
    .on('end', () => c.svg.classed('dragging', 0))
    .on('drag', function(d){
      d.x = d3.clamp(.03, c.x.invert(d3.event.x), .97)
      d.y = d3.clamp(.03, c.y.invert(d3.event.y), .97)

      updateCircle(d)
      updateAll()
    })
    .subject(function(d){ return {x: c.x(d.x), y: c.y(d.y)} })

  var circleSel = c.svg.appendMany('circle.point', pointData)
    .at({r: 4, fill: d => util.colors[d[ct.key]]})
    .call(drag)
    .classed('swapped', d => d.color0 != d.color1)
    .translate(d => [c.x(d.x), c.y(d.y)])
    // .call(d3.attachTooltip)

  updateCircleFns.push(d => {
    circleSel
      .filter(e => e == d) // rendering circles is dropping frames ?
      .translate(d => [c.x(d.x), c.y(d.y)])
  })

  if (ct2){
    var defs = c.svg.append('defs');
    defs.append('linearGradient#red-blue-def')
      .append('stop').at({offset: '0%',  'stop-color': util.colors[0]}).parent()
      .append('stop').at({offset: '45%',  'stop-color': util.colors[0]}).parent()
      .append('stop').at({offset: '55%',  'stop-color': util.colors[1]}).parent()
      .append('stop').at({offset: '100%', 'stop-color': util.colors[1]})
    defs.append('linearGradient#blue-red-def')
      .append('stop').at({offset: '0%',  'stop-color': util.colors[1]}).parent()
      .append('stop').at({offset: '45%',  'stop-color': util.colors[1]}).parent()
      .append('stop').at({offset: '55%',  'stop-color': util.colors[0]}).parent()
      .append('stop').at({offset: '100%', 'stop-color': util.colors[0]})

    circleSel
      // .at({r: 1.2})
      .filter(d => d.color0 != d.color1)
      .st({r: 7, fillOpacity: 1})
      .st({fill: 'url(#red-blue-def)'})//, stroke: 'url(#blue-red-def)'})

    var gradientClipAnnoSel = c.svg.append('text.annotation')
      .translate([c.width + 20, -40])
      .tspans(d3.wordwrap('Completely clipping the gradient stops the model from learning anything from the training data.', 25), 14)

    divSel.append('div.annotation')
      .translate([30, c.height + 5])
      .html(`
        <span style='color:${util.colors[0]}'>〰</span> Models trained with the isolated blue point
        <div>
        <span style='color:${util.colors[1]}'>〰</span> Models trained with the isolated red point
      `)
      .st({lineHeight: '1.3em'})
      .selectAll('span').st({fontSize: 20, height: 0, display: 'inline-block', top: 3, position: 'relative', fontWeight: 700})


  }

  function getRandLines(){
    return ct2 ? ct.randLines.concat(ct2.randLines) : ct.randLines
  }

  var ctx = c.layers[1]

  var lineGen = d3.line()
    .x(d => c.x(d.x))
    .y(d => c.y(d.y))
    .curve(d3.curveNatural)
    .context(ctx)

  ct.renderFns.push(() => {
    var scores = ct.buckets[0].scores
    var paddedLineData = getRandLines().map(line => {
      var xyData = line[batchIndex].map((scoreIndex, i) => {
        return {x: ct.buckets[i].x, y: scores[scoreIndex | 0].y}
      })

      return [
        {x: 0, y: batchIndex*state.learningRate ? xyData[0].y : 0},
        ...xyData,
        {x: 1, y: batchIndex*state.learningRate ? _.last(xyData).y : 1}
      ]
    })

    ctx.clearRect(-c.margin.left, -c.margin.top, c.width + c.margin.left + c.margin.right, c.height + c.margin.top + c.margin.bottom)
    paddedLineData.forEach((d, i) => {
      ctx.beginPath()
      ctx.lineWidth = .1
      ctx.strokeStyle = !ct2 ? '#000' : i < ct.randLines.length ? util.colors[1] : util.colors[0]
      lineGen(d)
      ctx.stroke()
    })

    if (ct2){
      gradientClipAnnoSel.st({opacity: state.learningRate == 0 ? 1 : 0})
    }
  })
}


function addSliders(){
  var width = 180
  var height = 30
  var color = '#000'

  var sliders = [
    {key: 'nMaxRand', label: 'Random Noise', r: [0, 30]},
    {key: 'learningRate', label: 'Gradient Clip', r: [30, 0]},
  ]
  sliders.forEach(d => {
    d.value = state[d.key]
    d.xScale = d3.scaleLinear().range([0, width]).domain(d.r).clamp(1)
  })

  var svgSel = dbSel.append('div.sliders').lower()
    .st({marginTop: 5, marginBottom: 5})
    .appendMany('div.slider-container', sliders)
    .append('svg').at({width, height})
    .append('g').translate(120, 0)

  svgSel.append('text.chart-title')
    .text(d => d.label)
    .at({textAnchor: 'end', dy: '.33em', x: -15})

  var sliderSel = svgSel
    .on('click', function(d){
      d.value = d.xScale.invert(d3.mouse(this)[0])
      renderSliders(d)
    })
    .classed('slider', true)
    .st({cursor: 'pointer'})

  var textSel = sliderSel.append('text.slider-label-container')
    .at({y: -20, fontWeight: 500, textAnchor: 'middle', x: 180/2})

  sliderSel.append('rect')
    .at({width, height, y: -height/2, fill: 'rgba(0,0,0,0)'})

  sliderSel.append('path').at({
    d: `M 0 -.5 H ${width}`, 
    stroke: color,
    strokeWidth: 1
  })

  var leftPathSel = sliderSel.append('path').at({
    d: `M 0 -.5 H ${width}`, 
    stroke: color,
    strokeWidth: 3
  })

  var drag = d3.drag()
    .on('drag', function(d){
      var x = d3.mouse(this)[0]
      d.value = d.xScale.invert(x)
      
      renderSliders(d)
    })

  var circleSel = sliderSel.append('circle').call(drag)
    .at({r: 7, stroke: '#000'})

  function renderSliders(d){
    if (d) state[d.key] = d.value

    circleSel.at({cx: d => d.xScale(d.value)})
    leftPathSel.at({d: d => `M 0 -.5 H ${d.xScale(d.value)}`})

    updateAll()
  }
  renderSliders()
}
addSliders()


updateAll()