Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import from_pretrained_keras
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import tensorflow as tf
|
5 |
+
import tensorflow_hub as hub
|
6 |
+
import tensorflow_text as text
|
7 |
+
from tensorflow import keras
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
|
11 |
+
def make_bert_preprocessing_model(sentence_features, seq_length=128):
|
12 |
+
"""Returns Model mapping string features to BERT inputs.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
sentence_features: A list with the names of string-valued features.
|
16 |
+
seq_length: An integer that defines the sequence length of BERT inputs.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
A Keras Model that can be called on a list or dict of string Tensors
|
20 |
+
(with the order or names, resp., given by sentence_features) and
|
21 |
+
returns a dict of tensors for input to BERT.
|
22 |
+
"""
|
23 |
+
|
24 |
+
input_segments = [
|
25 |
+
tf.keras.layers.Input(shape=(), dtype=tf.string, name=ft)
|
26 |
+
for ft in sentence_features
|
27 |
+
]
|
28 |
+
|
29 |
+
# tokenize the text to word pieces
|
30 |
+
bert_preprocess = hub.load(bert_preprocess_path)
|
31 |
+
tokenizer = hub.KerasLayer(bert_preprocess.tokenize,
|
32 |
+
name="tokenizer")
|
33 |
+
|
34 |
+
segments = [tokenizer(s) for s in input_segments]
|
35 |
+
|
36 |
+
truncated_segments = segments
|
37 |
+
|
38 |
+
packer = hub.KerasLayer(bert_preprocess.bert_pack_inputs,
|
39 |
+
arguments=dict(seq_length=seq_length),
|
40 |
+
name="packer")
|
41 |
+
model_inputs = packer(truncated_segments)
|
42 |
+
return keras.Model(input_segments, model_inputs)
|
43 |
+
|
44 |
+
|
45 |
+
def preprocess_image(image_path, resize):
|
46 |
+
extension = tf.strings.split(image_path)[-1]
|
47 |
+
|
48 |
+
image = tf.io.read_file(image_path)
|
49 |
+
if extension == b"jpg":
|
50 |
+
image = tf.image.decode_jpeg(image, 3)
|
51 |
+
else:
|
52 |
+
image = tf.image.decode_png(image, 3)
|
53 |
+
|
54 |
+
image = tf.image.resize(image, resize)
|
55 |
+
return image
|
56 |
+
|
57 |
+
def preprocess_text(text_1, text_2):
|
58 |
+
|
59 |
+
text_1 = tf.convert_to_tensor([text_1])
|
60 |
+
text_2 = tf.convert_to_tensor([text_2])
|
61 |
+
|
62 |
+
output = bert_preprocess_model([text_1, text_2])
|
63 |
+
|
64 |
+
output = {feature: tf.squeeze(output[feature]) for feature in bert_input_features}
|
65 |
+
|
66 |
+
return output
|
67 |
+
|
68 |
+
def preprocess_text_and_image(sample, resize):
|
69 |
+
|
70 |
+
image_1 = preprocess_image(sample['image_1_path'], resize)
|
71 |
+
image_2 = preprocess_image(sample['image_2_path'], resize)
|
72 |
+
|
73 |
+
text = preprocess_text(sample['text_1'], sample['text_2'])
|
74 |
+
|
75 |
+
return {"image_1": image_1, "image_2": image_2, "text": text}
|
76 |
+
|
77 |
+
|
78 |
+
def classify_info(image_1, text_1, image_2, text_2):
|
79 |
+
|
80 |
+
sample = dict()
|
81 |
+
sample['image_1_path'] = image_1
|
82 |
+
sample['image_2_path'] = image_2
|
83 |
+
sample['text_1'] = text_1
|
84 |
+
sample['text_2'] = text_2
|
85 |
+
|
86 |
+
dataframe = pd.DataFrame(sample, index=[0])
|
87 |
+
|
88 |
+
ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), [0]))
|
89 |
+
ds = ds.map(lambda x, y: (preprocess_text_and_image(x, resize), y)).cache()
|
90 |
+
batch_size = 1
|
91 |
+
auto = tf.data.AUTOTUNE
|
92 |
+
ds = ds.batch(batch_size).prefetch(auto)
|
93 |
+
output = model.predict(ds)
|
94 |
+
|
95 |
+
outputs = dict()
|
96 |
+
|
97 |
+
outputs[labels[0]] = float(output[0][0])
|
98 |
+
outputs[labels[1]] = float(output[0][1])
|
99 |
+
outputs[labels[2]] = float(output[0][2])
|
100 |
+
#label = np.argmax(output)
|
101 |
+
return outputs #labels[label]
|
102 |
+
|
103 |
+
|
104 |
+
model = from_pretrained_keras("keras-io/multimodal-entailment")
|
105 |
+
resize = (128, 128)
|
106 |
+
bert_input_features = ["input_word_ids", "input_type_ids", "input_mask"]
|
107 |
+
bert_model_path = ("https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1")
|
108 |
+
bert_preprocess_path = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3"
|
109 |
+
bert_preprocess_model = make_bert_preprocessing_model(['text_1', 'text_2'])
|
110 |
+
|
111 |
+
labels = {0: "Contradictory", 1: "Implies", 2: "No Entailment"}
|
112 |
+
|
113 |
+
block = gr.Blocks()
|
114 |
+
|
115 |
+
examples = [['examples/image_1.png', '#IndiaFightsCorona:\n\nNearly 4.5 million beneficiaries vaccinated against #COVID19 in 19 days.\n\nIndia is the fastest country to cross landmark of vaccinating 4 million beneficiaries in merely 18 days.\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/beGDQfd06S', 'examples/image_2.jpg', '#IndiaFightsCorona:\n\nIndia has become the fastest nation to reach 4 million #COVID19 vaccinations ; it took only 18 days to administer the first 4 million #vaccines\n\n:@MoHFW_INDIA Secretary\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/9GENQlqtn3']]
|
116 |
+
|
117 |
+
|
118 |
+
with block:
|
119 |
+
gr.Markdown("Multimodal Entailment")
|
120 |
+
with gr.Tab("Hypothesis"):
|
121 |
+
with gr.Row():
|
122 |
+
gr.Markdown("Upload hypothesis image:")
|
123 |
+
image_1 = gr.inputs.Image(type="filepath")
|
124 |
+
text_1 = gr.inputs.Textbox(lines=5)
|
125 |
+
|
126 |
+
with gr.Tab("Premise"):
|
127 |
+
with gr.Row():
|
128 |
+
gr.Markdown("Upload premise image:")
|
129 |
+
image_2 = gr.inputs.Image(type="filepath")
|
130 |
+
text_2 = gr.inputs.Textbox(lines=5)
|
131 |
+
|
132 |
+
xray_results = gr.outputs.JSON()
|
133 |
+
xray_run = gr.Button("Run")
|
134 |
+
xray_run.click(xray_model, inputs=[disease, xray_scan], outputs=xray_results)
|
135 |
+
|
136 |
+
run = gr.Button("Run")
|
137 |
+
label = gr.outputs.Label()
|
138 |
+
run.click(model, inputs=[image_1, text_1, image_2, text_2], outputs=label)
|
139 |
+
|
140 |
+
block.launch()
|