|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
window.initPair = function(pair){ |
|
var isMobile = window.innerWidth <= 820 |
|
|
|
var sel = d3.select('.' + pair.class).html('') |
|
.at({role: 'graphics-document', 'aria-label': pair.ariaLabel}) |
|
.on('keydown', function(){ |
|
sel.classed('changed', 1) |
|
if (d3.event.keyCode != 13) return |
|
d3.event.preventDefault() |
|
|
|
|
|
pair.str0 = '' |
|
pair.str1 = '' |
|
|
|
updateChart() |
|
}) |
|
|
|
if (!sel.node()) return |
|
|
|
var optionSel = sel.append('div.options') |
|
|
|
var inputRow = optionSel.append('div.flex-row.flex-row-textarea') |
|
var input1Sel = inputRow.append('textarea.input-1') |
|
.st({color: util.colors[1]}).at({cols: 30}) |
|
input1Sel.node().value = pair.s1.replace('[MASK]', '_') |
|
|
|
var input0Sel = inputRow.append('textarea.input-0') |
|
.st({color: util.colors[0]}).at({cols: 30}) |
|
input0Sel.node().value = pair.s0.replace('[MASK]', '_') |
|
|
|
if (isMobile){ |
|
sel.selectAll('textarea').on('change', updateChart) |
|
} |
|
|
|
var countSel = optionSel.append('div') |
|
.append('b').text('Number of Tokens') |
|
.append('info').text('β').call(addLockedTooltip) |
|
.datum('The scales are set using the top N tokens for each sentence. <br><br>"Likelihoods" will show more than N tokens if a top completion for one sentence is unlikely for the other sentence.') |
|
.parent().parent() |
|
.append('div.flex-row') |
|
.appendMany('div.button', [30, 200, 1000, 5000, 99999]) |
|
.text(d => d > 5000 ? 'All' : d) |
|
.st({textAlign: 'center'}) |
|
.on('click', d => { |
|
pair.count = d |
|
updateChart() |
|
}) |
|
|
|
var typeSel = optionSel.append('div') |
|
.append('b').text('Chart Type') |
|
.append('info').text('β').call(addLockedTooltip) |
|
.datum('"Likelihoods" shows the logits from both models plotted directly with a shared linear scale.<br><br> To better contrast the outputs, "Differences" shows <code>logitA - logitB</code> on the y-axis and <code>mean(logitA, logitB)</code> on the x-axis with separate linear scales.') |
|
.parent().parent() |
|
.append('div.flex-row') |
|
.appendMany('div.button', ['Likelihoods', 'Differences']) |
|
.text(d => d) |
|
.st({textAlign: 'center'}) |
|
.on('click', d => { |
|
pair.type = d |
|
updateChart() |
|
}) |
|
|
|
var modelSel = optionSel.append('div') |
|
.st({display: pair.model == 'BERT' ? 'none' : ''}) |
|
.append('b').text('Model') |
|
.parent() |
|
.append('div.flex-row') |
|
.appendMany('div.button', ['BERT', 'Zari']) |
|
.text(d => d) |
|
.st({textAlign: 'center'}) |
|
.on('click', d => { |
|
pair.model = d |
|
updateChart() |
|
}) |
|
|
|
|
|
var updateSel = optionSel |
|
.append('div.flex-row') |
|
.append('div.button.update').on('click', updateChart) |
|
.text('Update') |
|
.st({display: isMobile ? 'none' : ''}) |
|
|
|
var warningSel = optionSel.append('div.warning') |
|
.text('β οΈSome of the text this model was trained on includes harmful stereotypes. This is a tool to uncover these associationsβnot an endorsement of them.') |
|
|
|
var resetSel = optionSel.append('div.reset') |
|
.html('<span>β»</span> Reset') |
|
.on('click', () => { |
|
pair = JSON.parse(pair.pairStr) |
|
pair.pairStr = JSON.stringify(pair) |
|
|
|
input0Sel.node().value = pair.s0 |
|
input1Sel.node().value = pair.s1 |
|
|
|
updateChart(true) |
|
}) |
|
|
|
if (pair.alts){ |
|
d3.select('.' + pair.class + '-alts').html('') |
|
.classed('alt-block', 1).st({display: 'block'}) |
|
.appendMany('span.p-button-link', pair.alts) |
|
.html(d => d.str) |
|
.on('click', d => { |
|
input0Sel.node().value = d.s0 |
|
input1Sel.node().value = d.s1 |
|
|
|
updateChart() |
|
}) |
|
} |
|
|
|
|
|
var margin = {bottom: 50, left: 25, top: 5, right: 20} |
|
var graphSel = sel.append('div.graph') |
|
var totalWidth = graphSel.node().offsetWidth |
|
var width = totalWidth - margin.left - margin.right |
|
|
|
var c = d3.conventions({ |
|
sel: graphSel.append('div').st({marginTop: isMobile ? 20 : -5}), |
|
width, |
|
height: width, |
|
margin, |
|
layers: 'sdds', |
|
}) |
|
|
|
|
|
var nTicks = 4 |
|
var tickScale = d3.scaleLinear().range([0, c.width]) |
|
c.svg.appendMany('path.bg-tick', d3.range(nTicks + 1)) |
|
.at({d: d => `M ${.5 + Math.round(tickScale(d/nTicks))} 0 V ${c.height}`}) |
|
c.svg.appendMany('path.bg-tick', d3.range(nTicks + 1)) |
|
.at({d: d => `M 0 ${.5 + Math.round(tickScale(d/nTicks))} H ${c.width}`}) |
|
|
|
|
|
var annotationSel = c.layers[1].appendMany('div.annotations', pair.annotations) |
|
.translate(d => d.pos) |
|
.html(d => d.str) |
|
.st({color: d => d.color, width: 250, postion: 'absolute'}) |
|
|
|
var scatter = window.initScatter(c) |
|
|
|
updateChart(true) |
|
|
|
|
|
async function updateChart(isFirst){ |
|
sel.classed('changed', 0) |
|
warningSel.st({opacity: isFirst ? 0 : 1}) |
|
resetSel.st({opacity: isFirst ? 0 : 1}) |
|
annotationSel.st({opacity: isFirst ? 1 : 0}) |
|
|
|
countSel.classed('active', d => d == pair.count) |
|
typeSel.classed('active', d => d == pair.type) |
|
modelSel.classed('active', d => d == pair.model) |
|
|
|
function getStr(sel){ |
|
return sel.node().value.replace('_', '[MASK]') |
|
} |
|
|
|
var modelPath = pair.model == 'Zari' ? 'embed_zari_cda' : 'embed' |
|
|
|
pair.s0 = input0Sel.node().value.replace('_', '[MASK]') |
|
pair.s1 = input1Sel.node().value.replace('_', '[MASK]') |
|
|
|
updateSel.classed('loading', 1) |
|
var vals0 = await post(modelPath, {sentence: pair.s0}) |
|
var vals1 = await post(modelPath, {sentence: pair.s1}) |
|
updateSel.classed('loading', 0) |
|
|
|
|
|
var allTokens = vals0.map((v0, i) => { |
|
return {word: tokenizer.vocab[i], v0, i, v1: vals1[i]} |
|
}) |
|
allTokens.forEach(d => { |
|
d.dif = d.v0 - d.v1 |
|
d.meanV = (d.v0 + d.v1) / 2 |
|
d.isVisible = false |
|
}) |
|
|
|
_.sortBy(allTokens, d => -d.v1).forEach((d, i) => d.v1i = i) |
|
_.sortBy(allTokens, d => -d.v0).forEach((d, i) => d.v0i = i) |
|
|
|
var topTokens = allTokens.filter(d => d.v0i <= pair.count || d.v1i <= pair.count) |
|
|
|
|
|
var logitExtent = d3.extent(topTokens.map(d => d.v0).concat(topTokens.map(d => d.v1))) |
|
|
|
var tokens = allTokens |
|
.filter(d => logitExtent[0] <= d.v0 && logitExtent[0] <= d.v1) |
|
|
|
var mag = logitExtent[1] - logitExtent[0] |
|
logitExtent = [logitExtent[0] - mag*.002, logitExtent[1] + mag*.002] |
|
|
|
if (pair.type == 'Differences') tokens = _.sortBy(allTokens, d => -d.meanV).slice(0, pair.count) |
|
|
|
tokens.forEach(d => { |
|
d.isVisible = true |
|
}) |
|
|
|
var maxDif = d3.max(d3.extent(tokens, d => d.dif).map(Math.abs)) |
|
var color = palette(-maxDif*.8, maxDif*.8) |
|
|
|
updateSentenceLabels() |
|
|
|
if (pair.type == 'Likelihoods'){ |
|
drawXY() |
|
} else{ |
|
drawRotated() |
|
} |
|
|
|
sel.classed('is-xy', pair.type == 'Likelihoods') |
|
sel.classed('is-rotate', pair.type != 'Likelihoods') |
|
|
|
|
|
function drawXY(){ |
|
c.x.domain(logitExtent) |
|
c.y.domain(logitExtent) |
|
|
|
d3.drawAxis(c) |
|
|
|
var s = {30: 4, 200: 3, 1000: 3}[pair.count] || 2 |
|
var scatterData = allTokens.map(d => { |
|
var x = c.x(d.v0) |
|
var y = c.y(d.v1) |
|
var fill = color(d.dif) |
|
var dif = d.dif |
|
var word = d.word |
|
var show = '' |
|
var isVisible = d.isVisible |
|
|
|
return {x, y, s, dif, fill, word, show, isVisible} |
|
}) |
|
|
|
var textCandidates = _.sortBy(scatterData.filter(d => d.isVisible), d => d.dif) |
|
d3.nestBy(textCandidates.slice(0, 1000), d => Math.round(d.y/10)) |
|
.forEach(d => d[0].show = 'uf') |
|
d3.nestBy(textCandidates.reverse().slice(0, 1000), d => Math.round(d.y/10)) |
|
.forEach(d => d[0].show = 'lr') |
|
|
|
logitExtent.pair = pair |
|
scatter.draw(c, scatterData, true) |
|
|
|
c.svg.selectAppend('text.x-axis-label.xy-only') |
|
.translate([c.width/2, c.height + 24]) |
|
.text(pair.label0 ? ' __ likelihood, ' + pair.label0 + ' sentence β' : '__ likelihood, sentence two β') |
|
.st({fill: util.colors[0]}) |
|
.at({textAnchor: 'middle'}) |
|
|
|
|
|
c.svg.selectAppend('g.y-axis-label.xy-only') |
|
.translate([c.width + 20, c.height/2]) |
|
.selectAppend('text') |
|
.text(pair.label1 ? ' __ likelihood, ' + pair.label1 + ' sentence β' : '__ likelihood, sentence one β') |
|
.st({fill: util.colors[1]}) |
|
.at({textAnchor: 'middle', transform: 'rotate(-90)'}) |
|
} |
|
|
|
function drawRotated(){ |
|
c.x.domain(d3.extent(tokens, d => d.meanV)) |
|
c.y.domain([maxDif, -maxDif]) |
|
|
|
d3.drawAxis(c) |
|
|
|
var scatterData = allTokens.map(d => { |
|
var x = c.x(d.meanV) |
|
var y = c.y(d.dif) |
|
var fill = color(d.dif) |
|
var word = d.word |
|
var show = '' |
|
var isVisible = d.isVisible |
|
|
|
return {x, y, s: 2, fill, word, show, isVisible} |
|
}) |
|
|
|
scatterData.forEach(d => { |
|
d.dx = d.x - c.width/2 |
|
d.dy = d.y - c.height/2 |
|
}) |
|
|
|
var textCandidates = _.sortBy(scatterData, d => -d.dx*d.dx - d.dy*d.dy) |
|
.filter(d => d.isVisible) |
|
.slice(0, 5000) |
|
d3.nestBy(textCandidates, d => Math.round(12*Math.atan2(d.dx, d.dy))) |
|
.map(d => d[0]) |
|
.forEach(d => d.show = (d.dy < 0 ? 'u' : 'l') + (d.dx < 0 ? 'l' : 'r')) |
|
|
|
scatter.draw(c, scatterData, false) |
|
|
|
c.svg.selectAppend('text.rotate-only.x-axis-label') |
|
.translate([c.width/2, c.height + 24]) |
|
.text('__ likelihood, both sentences β') |
|
.at({textAnchor: 'middle'}) |
|
.st({fill: '#000'}) |
|
|
|
c.svg.selectAll('g.rotate-only.sent-1,g.rotate-only.sent-1').remove() |
|
c.svg.selectAppend('g.rotate-only.sent-1') |
|
.translate([c.width + 20, c.height/2]) |
|
.append('text') |
|
.text(`Higher likelihood, ${pair.label1 ? pair.label1 + ' sentence ' : 'sentence one'} β`) |
|
.at({textAnchor: 'start', transform: 'rotate(-90)', x: 20}) |
|
.st({fill: util.colors[1]}) |
|
|
|
c.svg.selectAppend('g.rotate-only.sent-1') |
|
.translate([c.width + 20, c.height/2 + 0]) |
|
.append('text') |
|
.text(`β Higher likelihood, ${pair.label0 ? pair.label0 + ' sentence ' : 'sentence two'}`) |
|
.at({textAnchor: 'end', transform: 'rotate(-90)', x: -20}) |
|
.st({fill: util.colors[0]}) |
|
} |
|
} |
|
|
|
function updateSentenceLabels(){ |
|
var t0 = tokenizer.tokenize(pair.s0) |
|
var t1 = tokenizer.tokenize(pair.s1) |
|
|
|
var i = 0 |
|
while (t0[i] == t1[i] && i < t0.length) i++ |
|
|
|
var j = 1 |
|
while (t0[t0.length - j] == t1[t1.length - j] && j < t0.length) j++ |
|
|
|
pair.label0 = tokens2origStr(t0, pair.s0) |
|
pair.label1 = tokens2origStr(t1, pair.s1) |
|
|
|
function tokens2origStr(t, s){ |
|
var tokenStr = tokenizer.decode(t.slice(i, -j + 1)).trim() |
|
var lowerStr = s.toLowerCase() |
|
|
|
var startI = lowerStr.indexOf(tokenStr) |
|
return s.slice(startI, startI + tokenStr.length) |
|
} |
|
|
|
if ( |
|
!pair.label0.length || |
|
!pair.label1.length || |
|
pair.label0.length > 15 || |
|
pair.label1.length > 15){ |
|
pair.label0 = '' |
|
pair.label1 = '' |
|
} |
|
|
|
|
|
} |
|
} |
|
|
|
if (window.init) init() |
|
|