import gradio as gr import tensorflow as tf import numpy as np from PIL import Image model_path = "pokemons-model_transferlearning.keras" model = tf.keras.models.load_model(model_path) def predict_pokemons(image): # Preprocess image print(type(image)) image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image image = image.resize((150, 150)) #resize the image to 28x28 and converts it to gray scale image = np.array(image) image = np.expand_dims(image, axis=0) # same as image[None, ...] prediction = model.predict(image) # Convert the probabilities to rounded values prediction = np.round(prediction, 2) # Separate the probabilities for each class p_bulbasaur = prediction[0][0] p_dratini = prediction[0][1] p_gengar = prediction[0][2] return {'Bulbasaur': p_bulbasaur, 'Dratini': p_dratini, 'Gengar': p_gengar} input_image = gr.Image() iface = gr.Interface( fn=predict_pokemons, inputs=input_image, outputs=gr.Label(), examples=["images/bulbasaur1.png", "images/bulbasaur2.png", "images/dratini1.png", "images/dratini2.png", "images/dratini3.png", "images/gengar1.png", "images/gengar2.png", "images/gengar3.png"], description="TEST.") iface.launch()