|
import os |
|
from PIL import Image, ImageDraw |
|
import cv2 |
|
import numpy as np |
|
from IPython.display import HTML |
|
from base64 import b64encode |
|
|
|
import torch |
|
from torch import autocast |
|
from torch.nn import functional as F |
|
from diffusers import StableDiffusionPipeline, AutoencoderKL |
|
from diffusers import UNet2DConditionModel, PNDMScheduler, LMSDiscreteScheduler |
|
from diffusers.schedulers.scheduling_ddim import DDIMScheduler |
|
|
|
from tqdm.auto import tqdm |
|
from huggingface_hub import notebook_login |
|
|
|
import weights |
|
|
|
device = 'cpu' |
|
|
|
from Multilingual_CLIP.multilingual_clip import Config_MCLIP |
|
import transformers |
|
import torch |
|
|
|
|
|
class MultilingualCLIP(transformers.PreTrainedModel): |
|
config_class = Config_MCLIP.MCLIPConfig |
|
|
|
def __init__(self, config, *args, **kwargs): |
|
super().__init__(config, *args, **kwargs) |
|
self.transformer = transformers.AutoModel.from_pretrained(config.modelBase) |
|
self.LinearTransformation = torch.nn.Linear(in_features=config.transformerDimensions, |
|
out_features=config.numDims) |
|
|
|
def forward(self, txt, tokenizer, device): |
|
txt_tok = tokenizer(txt, padding='max_length', max_length=77, truncation=True, return_tensors='pt').to(device) |
|
embs = self.transformer(**txt_tok) |
|
embs = embs[0] |
|
att = txt_tok['attention_mask'] |
|
embs = (embs * att.unsqueeze(2)) / att.sum(dim=1)[:, None].unsqueeze(2) |
|
return self.LinearTransformation(embs) |
|
|
|
@classmethod |
|
def _load_state_dict_into_model(cls, model, state_dict, pretrained_model_name_or_path, _fast_init=True): |
|
model.load_state_dict(state_dict) |
|
return model, [], [], [] |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class AdaptationLayer(nn.Module): |
|
def __init__(self, input_dim, output_dim): |
|
super(AdaptationLayer, self).__init__() |
|
self.fc1 = nn.Linear(input_dim, output_dim*2) |
|
torch.nn.init.kaiming_uniform_(self.fc1.weight, nonlinearity='relu') |
|
self.bn1 = nn.BatchNorm1d(77) |
|
|
|
self.fc2 = nn.Linear(input_dim*2, output_dim*2) |
|
torch.nn.init.kaiming_uniform_(self.fc2.weight, nonlinearity='relu') |
|
self.bn2 = nn.BatchNorm1d(77) |
|
|
|
self.fc3 = nn.Linear(input_dim*2, output_dim) |
|
torch.nn.init.kaiming_uniform_(self.fc3.weight, nonlinearity='relu') |
|
self.bn3 = nn.BatchNorm1d(77) |
|
|
|
self.fc4 = nn.Linear(input_dim, output_dim) |
|
torch.nn.init.kaiming_uniform_(self.fc4.weight, nonlinearity='relu') |
|
self.bn4 = nn.BatchNorm1d(77) |
|
|
|
self.fc5 = nn.Linear(input_dim, output_dim) |
|
|
|
def forward(self, x): |
|
x = nn.functional.normalize(x, p=2.0, dim=1, eps=1e-12, out=None) |
|
x = torch.relu(self.bn1(self.fc1(x))) |
|
x = torch.relu(self.bn2(self.fc2(x))) |
|
x = torch.relu(self.bn3(self.fc3(x))) |
|
x = torch.relu(self.bn4(self.fc4(x))) |
|
|
|
return self.fc5(x) |
|
|
|
|
|
adapt_model = AdaptationLayer(768,768) |
|
adapt_model.to(device) |
|
state_dict = torch.load('weights/checkpoint_9.pth') |
|
adapt_model.load_state_dict(state_dict) |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
'CompVis/stable-diffusion-v1-4', subfolder='vae', use_auth_token=True) |
|
vae = vae.to(device) |
|
|
|
|
|
tokenizer = text_tokenizer |
|
text_encoder = text_model |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained( |
|
'CompVis/stable-diffusion-v1-4', subfolder='unet', use_auth_token=True) |
|
unet = unet.to(device) |
|
|
|
|
|
scheduler = LMSDiscreteScheduler( |
|
beta_start=0.00085, beta_end=0.012, |
|
beta_schedule='scaled_linear', num_train_timesteps=1000) |
|
|
|
|
|
def get_text_embeds(prompt): |
|
with torch.no_grad(): |
|
text_embeddings = text_model(prompt, text_tokenizer, device) |
|
text_embeddings = adapt_model(text_embeddings) |
|
|
|
|
|
with torch.no_grad(): |
|
uncond_embeddings = text_model([''] * len(prompt), text_tokenizer, device) |
|
uncond_embeddings = adapt_model(uncond_embeddings) |
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
return text_embeddings |
|
|
|
|
|
def produce_latents(text_embeddings, height=512, width=512, |
|
num_inference_steps=50, guidance_scale=7.5, latents=None): |
|
if latents is None: |
|
latents = torch.randn((text_embeddings.shape[0] // 2, unet.in_channels, \ |
|
height // 8, width // 8)) |
|
latents = latents.to(device) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
latents = latents * scheduler.sigmas[0] |
|
|
|
with autocast('cpu'): |
|
for i, t in tqdm(enumerate(scheduler.timesteps)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) |
|
sigma = scheduler.sigmas[i] |
|
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) |
|
|
|
|
|
with torch.no_grad(): |
|
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings.to(device))['sample'] |
|
|
|
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = scheduler.step(noise_pred, i, latents)['prev_sample'] |
|
|
|
return latents |
|
|
|
|
|
def decode_img_latents(latents): |
|
latents = 1 / 0.18215 * latents |
|
|
|
with torch.no_grad(): |
|
imgs = vae.decode(latents) |
|
|
|
imgs = (imgs / 2 + 0.5).clamp(0, 1) |
|
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy() |
|
imgs = (imgs * 255).round().astype('uint8') |
|
pil_images = [Image.fromarray(image) for image in imgs] |
|
return pil_images |
|
|
|
def prompt_to_img(prompts, height=512, width=512, num_inference_steps=50, |
|
guidance_scale=7.5, latents=None): |
|
if isinstance(prompts, str): |
|
prompts = [prompts] |
|
|
|
|
|
text_embeds = get_text_embeds(prompts) |
|
|
|
|
|
latents = produce_latents( |
|
text_embeds, height=height, width=width, latents=latents, |
|
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale) |
|
|
|
|
|
imgs = decode_img_latents(latents) |
|
|
|
return imgs |
|
|
|
|
|
|
|
|