medmac01's picture
Upload 6 files
ff09d94 verified
raw
history blame
6.42 kB
import os
from PIL import Image, ImageDraw
import cv2
import numpy as np
from IPython.display import HTML
from base64 import b64encode
import torch
from torch import autocast
from torch.nn import functional as F
from diffusers import StableDiffusionPipeline, AutoencoderKL
from diffusers import UNet2DConditionModel, PNDMScheduler, LMSDiscreteScheduler
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
#from transformers import CLIPTextModel, CLIPTokenizer
from tqdm.auto import tqdm
from huggingface_hub import notebook_login
import weights
device = 'cpu'
from Multilingual_CLIP.multilingual_clip import Config_MCLIP
import transformers
import torch
class MultilingualCLIP(transformers.PreTrainedModel):
config_class = Config_MCLIP.MCLIPConfig
def __init__(self, config, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.transformer = transformers.AutoModel.from_pretrained(config.modelBase)
self.LinearTransformation = torch.nn.Linear(in_features=config.transformerDimensions,
out_features=config.numDims)
def forward(self, txt, tokenizer, device):
txt_tok = tokenizer(txt, padding='max_length', max_length=77, truncation=True, return_tensors='pt').to(device)
embs = self.transformer(**txt_tok)
embs = embs[0]
att = txt_tok['attention_mask']
embs = (embs * att.unsqueeze(2)) / att.sum(dim=1)[:, None].unsqueeze(2)
return self.LinearTransformation(embs)
@classmethod
def _load_state_dict_into_model(cls, model, state_dict, pretrained_model_name_or_path, _fast_init=True):
model.load_state_dict(state_dict)
return model, [], [], []
import torch
import torch.nn as nn
# Define the adaptation layer, 'checkpoint_9.pth'
class AdaptationLayer(nn.Module):
def __init__(self, input_dim, output_dim):
super(AdaptationLayer, self).__init__()
self.fc1 = nn.Linear(input_dim, output_dim*2)
torch.nn.init.kaiming_uniform_(self.fc1.weight, nonlinearity='relu')
self.bn1 = nn.BatchNorm1d(77)
self.fc2 = nn.Linear(input_dim*2, output_dim*2)
torch.nn.init.kaiming_uniform_(self.fc2.weight, nonlinearity='relu')
self.bn2 = nn.BatchNorm1d(77)
self.fc3 = nn.Linear(input_dim*2, output_dim)
torch.nn.init.kaiming_uniform_(self.fc3.weight, nonlinearity='relu')
self.bn3 = nn.BatchNorm1d(77)
self.fc4 = nn.Linear(input_dim, output_dim)
torch.nn.init.kaiming_uniform_(self.fc4.weight, nonlinearity='relu')
self.bn4 = nn.BatchNorm1d(77)
self.fc5 = nn.Linear(input_dim, output_dim)
def forward(self, x):
x = nn.functional.normalize(x, p=2.0, dim=1, eps=1e-12, out=None)
x = torch.relu(self.bn1(self.fc1(x)))
x = torch.relu(self.bn2(self.fc2(x)))
x = torch.relu(self.bn3(self.fc3(x)))
x = torch.relu(self.bn4(self.fc4(x)))
return self.fc5(x)
adapt_model = AdaptationLayer(768,768)
adapt_model.to(device)
state_dict = torch.load('weights/checkpoint_9.pth')
adapt_model.load_state_dict(state_dict)
# 1. Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained(
'CompVis/stable-diffusion-v1-4', subfolder='vae', use_auth_token=True)
vae = vae.to(device)
# 2. Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = text_tokenizer
text_encoder = text_model
# 3. The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained(
'CompVis/stable-diffusion-v1-4', subfolder='unet', use_auth_token=True)
unet = unet.to(device)
# 4. Create a scheduler for inference
scheduler = LMSDiscreteScheduler(
beta_start=0.00085, beta_end=0.012,
beta_schedule='scaled_linear', num_train_timesteps=1000)
def get_text_embeds(prompt):
with torch.no_grad():
text_embeddings = text_model(prompt, text_tokenizer, device)
text_embeddings = adapt_model(text_embeddings)
# Do the same for unconditional embeddings
with torch.no_grad():
uncond_embeddings = text_model([''] * len(prompt), text_tokenizer, device)
uncond_embeddings = adapt_model(uncond_embeddings)
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def produce_latents(text_embeddings, height=512, width=512,
num_inference_steps=50, guidance_scale=7.5, latents=None):
if latents is None:
latents = torch.randn((text_embeddings.shape[0] // 2, unet.in_channels, \
height // 8, width // 8))
latents = latents.to(device)
scheduler.set_timesteps(num_inference_steps)
latents = latents * scheduler.sigmas[0]
with autocast('cpu'):
for i, t in tqdm(enumerate(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings.to(device))['sample']
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, i, latents)['prev_sample']
return latents
def decode_img_latents(latents):
latents = 1 / 0.18215 * latents
with torch.no_grad():
imgs = vae.decode(latents)
imgs = (imgs / 2 + 0.5).clamp(0, 1)
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs * 255).round().astype('uint8')
pil_images = [Image.fromarray(image) for image in imgs]
return pil_images
def prompt_to_img(prompts, height=512, width=512, num_inference_steps=50,
guidance_scale=7.5, latents=None):
if isinstance(prompts, str):
prompts = [prompts]
# Prompts -> text embeds
text_embeds = get_text_embeds(prompts)
# Text embeds -> img latents
latents = produce_latents(
text_embeds, height=height, width=width, latents=latents,
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale)
# Img latents -> imgs
imgs = decode_img_latents(latents)
return imgs