File size: 2,089 Bytes
ff09d94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
from model import *
# SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
# Constants
# base = "stabilityai/stable-diffusion-xl-base-1.0"
# repo = "ByteDance/SDXL-Lightning"
# checkpoints = {
# "1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1],
# "2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2],
# "4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4],
# "8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8],
# }
# loaded = None
# Ensure model and scheduler are initialized in GPU-enabled function
# if torch.cuda.is_available():
# pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
# Function
# @spaces.GPU(enable_queue=True)
def generate_image(prompt):
return prompt_to_img(prompt)[0]
# Gradio Interface
description = """
This demo utilizes the SDXL-Lightning model by ByteDance, which is a lightning-fast text-to-image generative model capable of producing high-quality images in 4 steps.
As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning
"""
with gr.Blocks(css="style.css") as demo:
gr.HTML("<h1><center>Text-to-Image with SDXL-Lightning ⚡</center></h1>")
gr.Markdown(description)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
submit = gr.Button(scale=1, variant='primary')
img = gr.Image(label='SDXL-Lightning Generated Image')
prompt.submit(fn=generate_image,
inputs=[prompt],
outputs=img,
)
submit.click(fn=generate_image,
inputs=[prompt],
outputs=img,
)
demo.queue().launch() |