mattyamonaca commited on
Commit
e3dd038
·
1 Parent(s): 2fbc328

Add application file

Browse files
Files changed (10) hide show
  1. .gitignore +164 -0
  2. LICENSE +201 -0
  3. README.md +35 -13
  4. app.py +121 -0
  5. controlnet/lineart/__put_your_lineart_model +0 -0
  6. convertor.py +102 -0
  7. requirements.txt +13 -0
  8. sd_model.py +66 -0
  9. starline.py +416 -0
  10. utils.py +53 -0
.gitignore ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ output/
153
+ # Cython debug symbols
154
+ cython_debug/
155
+
156
+ # PyCharm
157
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
158
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
159
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
160
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
161
+ #.idea/
162
+
163
+ *.safetensors
164
+ *.json
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,13 +1,35 @@
1
- ---
2
- title: Starline
3
- emoji: 📊
4
- colorFrom: pink
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 4.33.0
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # starline
2
+ **St**rict coloring m**a**chine fo**r** **line** drawings.
3
+
4
+
5
+ ![image](https://github.com/mattyamonaca/starline/assets/48423148/eae07a6e-9c7b-4292-8c70-dac8ec8eeb7b)
6
+
7
+
8
+ https://github.com/mattyamonaca/starline/assets/48423148/8199c65c-a19f-42e9-aab7-df5ed6ef5b4c
9
+
10
+ # Installation
11
+ ```
12
+ git clone https://github.com/mattyamonaca/starline.git
13
+ cd starline
14
+ conda create -n starline python=3.10
15
+ conda activate starline
16
+ conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia
17
+ pip install -r requirements.txt
18
+ ```
19
+
20
+ # Usage
21
+ - ```python app.py```
22
+ - Input the line drawing you wish to color (The background should be transparent).
23
+ - Input a prompt describing the color you want to add.
24
+
25
+ - 背景を透過した状態で線画を入力します
26
+ - 付けたい色を説明するプロンプトを入力します
27
+
28
+ # Precautions
29
+ - Image size 1024 x 1024 is recommended.
30
+ - Aliasing is a beta version.
31
+ - Areas finely surrounded by line drawings cannot be colored.
32
+
33
+ - 画像サイズは1024×1024を推奨します
34
+ - エイリアス処理はβ版です。より線画に忠実であることを求める場合は2値線画を推奨します
35
+ - 線画で細かく囲まれた部分は着色できません。着色できない部分は透過した状態で出力されます。
app.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import sys
3
+ from starline import process
4
+
5
+ from utils import load_cn_model, load_cn_config, randomname
6
+ from convertor import pil2cv, cv2pil
7
+
8
+ from sd_model import get_cn_pipeline, generate, get_cn_detector
9
+ import cv2
10
+ import os
11
+ import numpy as np
12
+ from PIL import Image
13
+ import zipfile
14
+ import torch
15
+
16
+ zero = torch.Tensor([0]).cuda()
17
+
18
+ path = os.getcwd()
19
+ output_dir = f"{path}/output"
20
+ input_dir = f"{path}/input"
21
+ cn_lineart_dir = f"{path}/controlnet/lineart"
22
+
23
+ load_cn_model(cn_lineart_dir)
24
+ load_cn_config(cn_lineart_dir)
25
+
26
+
27
+ def zip_png_files(folder_path):
28
+ # Zipファイルの名前を設定(フォルダ名と同じにします)
29
+ zip_path = os.path.join(folder_path, 'output.zip')
30
+
31
+ # zipfileオブジェクトを作成し、書き込みモードで開く
32
+ with zipfile.ZipFile(zip_path, 'w') as zipf:
33
+ # フォルダ内のすべてのファイルをループ処理
34
+ for foldername, subfolders, filenames in os.walk(folder_path):
35
+ for filename in filenames:
36
+ # PNGファイルのみを対象にする
37
+ if filename.endswith('.png'):
38
+ # ファイルのフルパスを取得
39
+ file_path = os.path.join(foldername, filename)
40
+ # zipファイルに追加
41
+ zipf.write(file_path, arcname=os.path.relpath(file_path, folder_path))
42
+
43
+
44
+ class webui:
45
+ def __init__(self):
46
+ self.demo = gr.Blocks()
47
+
48
+ def undercoat(self, input_image, pos_prompt, neg_prompt, alpha_th, thickness):
49
+ org_line_image = input_image
50
+ image = pil2cv(input_image)
51
+ image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
52
+
53
+ index = np.where(image[:, :, 3] == 0)
54
+ image[index] = [255, 255, 255, 255]
55
+ input_image = cv2pil(image)
56
+
57
+ pipe = get_cn_pipeline()
58
+ detectors = get_cn_detector(input_image.resize((1024, 1024), Image.ANTIALIAS))
59
+
60
+
61
+ gen_image = generate(pipe, detectors, pos_prompt, neg_prompt)
62
+ color_img, unfinished = process(gen_image.resize((image.shape[1], image.shape[0]), Image.ANTIALIAS) , org_line_image, alpha_th, thickness)
63
+ color_img.save(f"{output_dir}/color_img.png")
64
+
65
+ #color_img = color_img.resize((image.shape[1], image.shape[0]) , Image.ANTIALIAS)
66
+
67
+
68
+ output_img = Image.alpha_composite(color_img, org_line_image)
69
+ name = randomname(10)
70
+ os.makedirs(f"{output_dir}/{name}")
71
+ output_img.save(f"{output_dir}/{name}/output_image.png")
72
+ org_line_image.save(f"{output_dir}/{name}/line_image.png")
73
+ color_img.save(f"{output_dir}/{name}/color_image.png")
74
+ unfinished.save(f"{output_dir}/{name}/unfinished_image.png")
75
+
76
+ outputs = [output_img, org_line_image, color_img, unfinished]
77
+ zip_png_files(f"{output_dir}/{name}")
78
+ filename = f"{output_dir}/{name}/output.zip"
79
+
80
+ return outputs, filename
81
+
82
+
83
+
84
+ def launch(self, share):
85
+ with self.demo:
86
+ with gr.Row():
87
+ with gr.Column():
88
+ input_image = gr.Image(type="pil", image_mode="RGBA")
89
+
90
+ pos_prompt = gr.Textbox(value="1girl, blue hair, pink shirts, bestquality, 4K", max_lines=1000, label="positive prompt")
91
+ neg_prompt = gr.Textbox(value=" (worst quality, low quality:1.2), (lowres:1.2), (bad anatomy:1.2), (greyscale, monochrome:1.4)", max_lines=1000, label="negative prompt")
92
+
93
+ alpha_th = gr.Slider(maximum = 255, value=100, label = "alpha threshold")
94
+ thickness = gr.Number(value=5, label="Thickness of correction area (Odd numbers need to be entered)")
95
+ #gr.Slider(maximum = 21, value=3, step=2, label = "Thickness of correction area")
96
+
97
+ submit = gr.Button(value="Start")
98
+ with gr.Row():
99
+ with gr.Column():
100
+ with gr.Tab("output"):
101
+ output_0 = gr.Gallery(format="png")
102
+ output_file = gr.File()
103
+ submit.click(
104
+ self.undercoat,
105
+ inputs=[input_image, pos_prompt, neg_prompt, alpha_th, thickness],
106
+ outputs=[output_0, output_file]
107
+ )
108
+
109
+ self.demo.queue()
110
+ self.demo.launch(share=share)
111
+
112
+
113
+ if __name__ == "__main__":
114
+ ui = webui()
115
+ if len(sys.argv) > 1:
116
+ if sys.argv[1] == "share":
117
+ ui.launch(share=True)
118
+ else:
119
+ ui.launch(share=False)
120
+ else:
121
+ ui.launch(share=False)
controlnet/lineart/__put_your_lineart_model ADDED
File without changes
convertor.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ from skimage import color
4
+ from PIL import Image
5
+
6
+
7
+ def skimage_rgb2lab(rgb):
8
+ return color.rgb2lab(rgb.reshape(1,1,3))
9
+
10
+
11
+ def rgb2df(img):
12
+ h, w, _ = img.shape
13
+ x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
14
+ r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
15
+ df = pd.DataFrame({
16
+ "x_l": x_l.ravel(),
17
+ "y_l": y_l.ravel(),
18
+ "r": r.ravel(),
19
+ "g": g.ravel(),
20
+ "b": b.ravel(),
21
+ })
22
+ return df
23
+
24
+ def mask2df(mask):
25
+ h, w = mask.shape
26
+ x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
27
+ flg = mask.astype(int)
28
+ df = pd.DataFrame({
29
+ "x_l_m": x_l.ravel(),
30
+ "y_l_m": y_l.ravel(),
31
+ "m_flg": flg.ravel(),
32
+ })
33
+ return df
34
+
35
+
36
+ def rgba2df(img):
37
+ h, w, _ = img.shape
38
+ x_l, y_l = np.meshgrid(np.arange(h), np.arange(w), indexing='ij')
39
+ r, g, b, a = img[:,:,0], img[:,:,1], img[:,:,2], img[:,:,3]
40
+ df = pd.DataFrame({
41
+ "x_l": x_l.ravel(),
42
+ "y_l": y_l.ravel(),
43
+ "r": r.ravel(),
44
+ "g": g.ravel(),
45
+ "b": b.ravel(),
46
+ "a": a.ravel()
47
+ })
48
+ return df
49
+
50
+ def hsv2df(img):
51
+ x_l, y_l = np.meshgrid(np.arange(img.shape[0]), np.arange(img.shape[1]), indexing='ij')
52
+ h, s, v = np.transpose(img, (2, 0, 1))
53
+ df = pd.DataFrame({'x_l': x_l.flatten(), 'y_l': y_l.flatten(), 'h': h.flatten(), 's': s.flatten(), 'v': v.flatten()})
54
+ return df
55
+
56
+ def df2rgba(img_df):
57
+ r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
58
+ g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
59
+ b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
60
+ a_img = img_df.pivot_table(index="x_l", columns="y_l",values= "a").reset_index(drop=True).values
61
+ df_img = np.stack([r_img, g_img, b_img, a_img], 2).astype(np.uint8)
62
+ return df_img
63
+
64
+ def df2bgra(img_df):
65
+ r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
66
+ g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
67
+ b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
68
+ a_img = img_df.pivot_table(index="x_l", columns="y_l",values= "a").reset_index(drop=True).values
69
+ df_img = np.stack([b_img, g_img, r_img, a_img], 2).astype(np.uint8)
70
+ return df_img
71
+
72
+ def df2rgb(img_df):
73
+ r_img = img_df.pivot_table(index="x_l", columns="y_l",values= "r").reset_index(drop=True).values
74
+ g_img = img_df.pivot_table(index="x_l", columns="y_l",values= "g").reset_index(drop=True).values
75
+ b_img = img_df.pivot_table(index="x_l", columns="y_l",values= "b").reset_index(drop=True).values
76
+ df_img = np.stack([r_img, g_img, b_img], 2).astype(np.uint8)
77
+ return df_img
78
+
79
+ def pil2cv(image):
80
+ new_image = np.array(image, dtype=np.uint8)
81
+ if new_image.ndim == 2:
82
+ pass
83
+ elif new_image.shape[2] == 3:
84
+ new_image = new_image[:, :, ::-1]
85
+ elif new_image.shape[2] == 4:
86
+ new_image = new_image[:, :, [2, 1, 0, 3]]
87
+ return new_image
88
+
89
+ def cv2pil(image):
90
+ new_image = image.copy()
91
+ if new_image.ndim == 2:
92
+ pass
93
+ elif new_image.shape[2] == 3:
94
+ new_image = new_image[:, :, ::-1]
95
+ elif new_image.shape[2] == 4:
96
+ new_image = new_image[:, :, [2, 1, 0, 3]]
97
+ new_image = Image.fromarray(new_image)
98
+ return new_image
99
+
100
+
101
+
102
+
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ opencv-python==4.7.0.68
2
+ pandas==1.5.3
3
+ scikit-learn==1.2.1
4
+ scikit-image==0.19.3
5
+ Pillow==9.4.0
6
+ tqdm==4.63.0
7
+ diffusers==0.27.2
8
+ gradio==4.32.1
9
+ gradio_client==0.17.0
10
+ transformers==4.40.1
11
+ accelerate==0.21.0
12
+ safetensors==0.4.2
13
+
sd_model.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
2
+ from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL
3
+ import torch
4
+ import spaces
5
+
6
+ device = "cuda"
7
+
8
+ def get_cn_pipeline():
9
+ controlnets = [
10
+ ControlNetModel.from_pretrained("./controlnet/lineart", torch_dtype=torch.float16, use_safetensors=True),
11
+ ControlNetModel.from_pretrained("mattyamonaca/controlnet_line2line_xl", torch_dtype=torch.float16)
12
+ ]
13
+
14
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
15
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
16
+ "cagliostrolab/animagine-xl-3.1", controlnet=controlnets, vae=vae, torch_dtype=torch.float16
17
+ )
18
+
19
+ pipe.enable_model_cpu_offload()
20
+
21
+ #if pipe.safety_checker is not None:
22
+ # pipe.safety_checker = lambda images, **kwargs: (images, [False])
23
+
24
+ #pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
25
+ #pipe.to(device)
26
+
27
+ return pipe
28
+
29
+ def invert_image(img):
30
+ # 画像を読み込む
31
+ # 画像をグレースケールに変換(もしもともと白黒でない場合)
32
+ img = img.convert('L')
33
+ # 画像の各ピクセルを反転
34
+ inverted_img = img.point(lambda p: 255 - p)
35
+ # 反転した画像を保存
36
+ return inverted_img
37
+
38
+
39
+ def get_cn_detector(image):
40
+ #lineart_anime = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
41
+ #canny = CannyDetector()
42
+ #lineart_anime_img = lineart_anime(image)
43
+ #canny_img = canny(image)
44
+ #canny_img = canny_img.resize((lineart_anime(image).width, lineart_anime(image).height))
45
+ re_image = invert_image(image)
46
+
47
+
48
+ detectors = [re_image, image]
49
+ print(detectors)
50
+ return detectors
51
+
52
+ @spaces.GPU
53
+ def generate(pipe, detectors, prompt, negative_prompt):
54
+ default_pos = ""
55
+ default_neg = ""
56
+ prompt = default_pos + prompt
57
+ negative_prompt = default_neg + negative_prompt
58
+ print(type(pipe))
59
+ image = pipe(
60
+ prompt=prompt,
61
+ negative_prompt = negative_prompt,
62
+ image=detectors,
63
+ num_inference_steps=50,
64
+ controlnet_conditioning_scale=[1.0, 0.2],
65
+ ).images[0]
66
+ return image
starline.py ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict, deque
2
+
3
+ import cv2
4
+ import numpy as np
5
+ from PIL import Image
6
+ from skimage.color import deltaE_ciede2000, rgb2lab
7
+ from tqdm import tqdm
8
+
9
+
10
+ def modify_transparency(img, target_rgb):
11
+ # 画像を読み込む
12
+ copy_img = img.copy()
13
+ data = copy_img.getdata()
14
+
15
+ # 新しいピクセルデータを作成
16
+ new_data = []
17
+ for item in data:
18
+ # 指定されたRGB値のピクセルの場合、透明度を255に設定
19
+ if item[:3] == target_rgb:
20
+ new_data.append((item[0], item[1], item[2], 255))
21
+ else:
22
+ # それ以外の場合、透明度を0に設定
23
+ new_data.append((item[0], item[1], item[2], 0))
24
+
25
+ # 新しいデータを画像に設定し直す
26
+ copy_img.putdata(new_data)
27
+ return copy_img
28
+
29
+
30
+ def replace_color(image, color_1, color_2, alpha_np):
31
+ # 画像データを配列に変換
32
+ data = np.array(image)
33
+
34
+ # RGBAモードの画像であるため、形状変更時に4チャネルを考慮
35
+ original_shape = data.shape
36
+
37
+ color_1 = np.array(color_1, dtype=np.uint8)
38
+ color_2 = np.array(color_2, dtype=np.uint8)
39
+
40
+ # 幅優先探索で color_1 の領域を外側から塗りつぶす
41
+ # color_2 で保護されたオリジナルの線画
42
+ protected = np.all(data[:, :, :3] == color_2, axis=2)
43
+ # color_1 で塗られた塗りつぶしたい領域
44
+ fill_target = np.all(data[:, :, :3] == color_1, axis=2)
45
+ # すでに塗られている領域
46
+ colored = (protected | fill_target) == False
47
+
48
+ # bfs の始点を列挙
49
+ # colored をそのまま使ってもいいが、pythonは遅いのでnumpy経由のこの方が速い
50
+ # 上下左右にシフトした fill_target & colored == True になるやつ
51
+ adj_r = colored & np.roll(fill_target, -1, axis=0)
52
+ adj_r[:, -1] = False
53
+ adj_l = colored & np.roll(fill_target, 1, axis=0)
54
+ adj_l[:, 0] = False
55
+ adj_u = colored & np.roll(fill_target, 1, axis=1)
56
+ adj_u[:, 0] = False
57
+ adj_d = colored & np.roll(fill_target, -1, axis=1)
58
+ adj_d[:, -1] = False
59
+
60
+ # そのピクセルはすでに塗られていて、上下左右いずれかのピクセルが color_1 であるもの
61
+ bfs_start = adj_r | adj_l | adj_u | adj_d
62
+
63
+ que = deque(
64
+ zip(*np.where(bfs_start)),
65
+ maxlen=original_shape[0] * original_shape[1] * 2,
66
+ )
67
+
68
+ with tqdm(total=original_shape[0] * original_shape[1]) as pbar:
69
+ pbar.update(np.sum(colored) - np.sum(bfs_start) + np.sum(protected))
70
+ while len(que) > 0:
71
+ y, x = que.popleft()
72
+ neighbors = [
73
+ (x - 1, y),
74
+ (x + 1, y),
75
+ (x, y - 1),
76
+ (x, y + 1), # 上下左右
77
+ ]
78
+ pbar.update(1)
79
+ # assert not fill_target[y, x] and not protected[y, x]
80
+ # assert colored[y, x]
81
+ color = data[y, x, :3]
82
+
83
+ for nx, ny in neighbors:
84
+ if (
85
+ nx < 0
86
+ or nx >= original_shape[1]
87
+ or ny < 0
88
+ or ny >= original_shape[0]
89
+ ):
90
+ continue
91
+ if fill_target[ny, nx]:
92
+ fill_target[ny, nx] = False
93
+ # colored[ny, nx] = True
94
+ data[ny, nx, :3] = color
95
+ que.append((ny, nx))
96
+ pbar.update(pbar.total - pbar.n)
97
+
98
+ data[:, :, 3] = 255 - alpha_np
99
+ return Image.fromarray(data, "RGBA")
100
+
101
+
102
+ def recolor_lineart_and_composite(lineart_image, base_image, new_color, alpha_th):
103
+ """
104
+ Recolor an RGBA lineart image to a single new color while preserving alpha, and composite it over a base image.
105
+
106
+ Args:
107
+ lineart_image (PIL.Image): The lineart image with RGBA channels.
108
+ base_image (PIL.Image): The base image to composite onto.
109
+ new_color (tuple): The new RGB color for the lineart (e.g., (255, 0, 0) for red).
110
+
111
+ Returns:
112
+ PIL.Image: The composited image with the recolored lineart on top.
113
+ """
114
+ # Ensure images are in RGBA mode
115
+ if lineart_image.mode != "RGBA":
116
+ lineart_image = lineart_image.convert("RGBA")
117
+ if base_image.mode != "RGBA":
118
+ base_image = base_image.convert("RGBA")
119
+
120
+ # Extract the alpha channel from the lineart image
121
+ r, g, b, alpha = lineart_image.split()
122
+
123
+ alpha_np = np.array(alpha)
124
+ alpha_np[alpha_np < alpha_th] = 0
125
+ alpha_np[alpha_np >= alpha_th] = 255
126
+
127
+ new_alpha = Image.fromarray(alpha_np)
128
+
129
+ # Create a new image using the new color and the alpha channel from the original lineart
130
+ new_lineart_image = Image.merge(
131
+ "RGBA",
132
+ (
133
+ Image.new("L", lineart_image.size, int(new_color[0])),
134
+ Image.new("L", lineart_image.size, int(new_color[1])),
135
+ Image.new("L", lineart_image.size, int(new_color[2])),
136
+ new_alpha,
137
+ ),
138
+ )
139
+
140
+ # Composite the new lineart image over the base image
141
+ composite_image = Image.alpha_composite(base_image, new_lineart_image)
142
+
143
+ return composite_image, alpha_np
144
+
145
+
146
+ def thicken_and_recolor_lines(base_image, lineart, thickness=3, new_color=(0, 0, 0)):
147
+ """
148
+ Thicken the lines of a lineart image, recolor them, and composite onto another image,
149
+ while preserving the transparency of the original lineart.
150
+
151
+ Args:
152
+ base_image (PIL.Image): The base image to composite onto.
153
+ lineart (PIL.Image): The lineart image with transparent background.
154
+ thickness (int): The desired thickness of the lines.
155
+ new_color (tuple): The new color to apply to the lines (R, G, B).
156
+
157
+ Returns:
158
+ PIL.Image: The image with the recolored and thickened lineart composited on top.
159
+ """
160
+ # Ensure both images are in RGBA format
161
+ if base_image.mode != "RGBA":
162
+ base_image = base_image.convert("RGBA")
163
+ if lineart.mode != "RGB":
164
+ lineart = lineart.convert("RGBA")
165
+
166
+ # Convert the lineart image to OpenCV format
167
+ lineart_cv = np.array(lineart)
168
+
169
+ white_pixels = np.sum(lineart_cv == 255)
170
+ black_pixels = np.sum(lineart_cv == 0)
171
+
172
+ lineart_gray = cv2.cvtColor(lineart_cv, cv2.COLOR_RGBA2GRAY)
173
+
174
+ if white_pixels > black_pixels:
175
+ lineart_gray = cv2.bitwise_not(lineart_gray)
176
+
177
+ # Thicken the lines using OpenCV
178
+ kernel = np.ones((thickness, thickness), np.uint8)
179
+ lineart_thickened = cv2.dilate(lineart_gray, kernel, iterations=1)
180
+ lineart_thickened = cv2.bitwise_not(lineart_thickened)
181
+ # Create a new RGBA image for the recolored lineart
182
+ lineart_recolored = np.zeros_like(lineart_cv)
183
+ lineart_recolored[:, :, :3] = new_color # Set new RGB color
184
+
185
+ lineart_recolored[:, :, 3] = np.where(
186
+ lineart_thickened < 250, 255, 0
187
+ ) # Blend alpha with thickened lines
188
+
189
+ # Convert back to PIL Image
190
+ lineart_recolored_pil = Image.fromarray(lineart_recolored, "RGBA")
191
+
192
+ # Composite the thickened and recolored lineart onto the base image
193
+ combined_image = Image.alpha_composite(base_image, lineart_recolored_pil)
194
+
195
+ return combined_image
196
+
197
+
198
+ def generate_distant_colors(consolidated_colors, distance_threshold):
199
+ """
200
+ Generate new RGB colors that are at least 'distance_threshold' CIEDE2000 units away from given colors.
201
+
202
+ Args:
203
+ consolidated_colors (list of tuples): List of ((R, G, B), count) tuples.
204
+ distance_threshold (float): The minimum CIEDE2000 distance from the given colors.
205
+
206
+ Returns:
207
+ list of tuples: List of new RGB colors that meet the distance requirement.
208
+ """
209
+ # new_colors = []
210
+ # Convert the consolidated colors to LAB
211
+ consolidated_lab = [
212
+ rgb2lab(np.array([color], dtype=np.float32) / 255.0).reshape(3)
213
+ for color, _ in consolidated_colors
214
+ ]
215
+
216
+ # Try to find a distant color
217
+ max_attempts = 1000
218
+ best_dist = 0.0
219
+ best_color = (0, 0, 0)
220
+
221
+ # np.random.seed(42)
222
+ for _ in range(max_attempts):
223
+ # Generate a random color in RGB and convert to LAB
224
+ random_rgb = np.random.randint(0, 256, size=3)
225
+ random_lab = rgb2lab(np.array([random_rgb], dtype=np.float32) / 255.0).reshape(
226
+ 3
227
+ )
228
+ # consolidated_lab にある色からできるだけ遠い色を選びたい
229
+ min_distance = min(
230
+ map(
231
+ lambda base_color_lab: deltaE_ciede2000(base_color_lab, random_lab),
232
+ consolidated_lab,
233
+ )
234
+ )
235
+ if min_distance > distance_threshold:
236
+ return tuple(random_rgb)
237
+ # 閾値以上のものが見つからなかった場合に備えて一番良かったものを覚えておく
238
+ if best_dist < min_distance:
239
+ best_dist = min_distance
240
+ best_color = tuple(random_rgb)
241
+ return best_color
242
+
243
+
244
+ def consolidate_colors(major_colors, threshold):
245
+ """
246
+ Consolidate similar colors in the major_colors list based on the CIEDE2000 metric.
247
+
248
+ Args:
249
+ major_colors (list of tuples): List of ((R, G, B), count) tuples.
250
+ threshold (float): Threshold for CIEDE2000 color difference.
251
+
252
+ Returns:
253
+ list of tuples: Consolidated list of ((R, G, B), count) tuples.
254
+ """
255
+ # Convert RGB to LAB
256
+ colors_lab = [
257
+ rgb2lab(np.array([[color]], dtype=np.float32) / 255.0).reshape(3)
258
+ for color, _ in major_colors
259
+ ]
260
+ n = len(colors_lab)
261
+
262
+ # Find similar colors and consolidate
263
+ i = 0
264
+ while i < n:
265
+ j = i + 1
266
+ while j < n:
267
+ delta_e = deltaE_ciede2000(colors_lab[i], colors_lab[j])
268
+ if delta_e < threshold:
269
+ # Compare counts and consolidate to the color with the higher count
270
+ if major_colors[i][1] >= major_colors[j][1]:
271
+ major_colors[i] = (
272
+ major_colors[i][0],
273
+ major_colors[i][1] + major_colors[j][1],
274
+ )
275
+ major_colors.pop(j)
276
+ colors_lab.pop(j)
277
+ else:
278
+ major_colors[j] = (
279
+ major_colors[j][0],
280
+ major_colors[j][1] + major_colors[i][1],
281
+ )
282
+ major_colors.pop(i)
283
+ colors_lab.pop(i)
284
+ n -= 1
285
+ continue
286
+ j += 1
287
+ i += 1
288
+
289
+ return major_colors
290
+
291
+
292
+ def get_major_colors(image, threshold_percentage=0.01):
293
+ """
294
+ Analyze an image to find the major RGB values based on a threshold percentage.
295
+
296
+ Args:
297
+ image (PIL.Image): The image to analyze.
298
+ threshold_percentage (float): The percentage threshold to consider a color as major.
299
+
300
+ Returns:
301
+ list of tuples: A list of (color, count) tuples for colors that are more frequent than the threshold.
302
+ """
303
+ # Convert image to RGB if it's not
304
+ if image.mode != "RGB":
305
+ image = image.convert("RGB")
306
+
307
+ # Count each color
308
+ color_count = defaultdict(int)
309
+ for pixel in image.getdata():
310
+ color_count[pixel] += 1
311
+
312
+ # Total number of pixels
313
+ total_pixels = image.width * image.height
314
+
315
+ # Filter colors to find those above the threshold
316
+ major_colors = [
317
+ (color, count)
318
+ for color, count in color_count.items()
319
+ if (count / total_pixels) >= threshold_percentage
320
+ ]
321
+
322
+ return major_colors
323
+
324
+
325
+ def process(image, lineart, alpha_th, thickness):
326
+ org = image
327
+ image.save("tmp.png")
328
+
329
+ major_colors = get_major_colors(image, threshold_percentage=0.05)
330
+ major_colors = consolidate_colors(major_colors, 10)
331
+
332
+ th = 10
333
+ threshold_percentage = 0.05
334
+ while len(major_colors) < 1:
335
+ threshold_percentage = threshold_percentage - 0.001
336
+ major_colors = get_major_colors(image, threshold_percentage=threshold_percentage)
337
+
338
+ while len(major_colors) < 1:
339
+ th = th + 1
340
+ major_colors = consolidate_colors(major_colors, th)
341
+
342
+ new_color_1 = generate_distant_colors(major_colors, 50)
343
+ image = thicken_and_recolor_lines(
344
+ org, lineart, thickness=thickness, new_color=new_color_1
345
+ )
346
+
347
+ major_colors.append((new_color_1, 0))
348
+ new_color_2 = generate_distant_colors(major_colors, 40)
349
+ image, alpha_np = recolor_lineart_and_composite(
350
+ lineart, image, new_color_2, alpha_th
351
+ )
352
+ # import time
353
+ # start = time.time()
354
+ image = replace_color(image, new_color_1, new_color_2, alpha_np)
355
+ # end = time.time()
356
+ # print(f"{end-start} sec")
357
+ unfinished = modify_transparency(image, new_color_1)
358
+
359
+ return image, unfinished
360
+
361
+
362
+ def main():
363
+ import os
364
+ import sys
365
+ from argparse import ArgumentParser
366
+
367
+ from PIL import Image
368
+
369
+ from utils import randomname
370
+
371
+ args = ArgumentParser(
372
+ prog="starline",
373
+ description="Starline",
374
+ epilog="Starline",
375
+ )
376
+ args.add_argument("-c", "--colored_image", help="colored image", required=True)
377
+ args.add_argument("-l", "--lineart_image", help="lineart image", required=True)
378
+ args.add_argument("-o", "--output_dir", help="output directory", default="output")
379
+ args.add_argument("-a", "--alpha_th", help="alpha threshold", default=100, type=int)
380
+ args.add_argument("-t", "--thickness", help="line thickness", default=5, type=int)
381
+
382
+ args = args.parse_args(sys.argv[1:])
383
+ colored_image_path = args.colored_image
384
+ lineart_image_path = args.lineart_image
385
+ alpha = args.alpha_th
386
+ thickness = args.thickness
387
+ output_dir = args.output_dir
388
+
389
+ colored_image = Image.open(colored_image_path)
390
+ lineart_image = Image.open(lineart_image_path)
391
+ if lineart_image.mode == "P" or lineart_image.mode == "L":
392
+ # 線画が 1-channel 画像のときの処理
393
+ # alpha-channel の情報が入力されたと仮定して (透明 -> 0, 不透明 -> 255)
394
+ # RGB channel はこれを反転させたものにする (透明 -> 白 -> 255, 不透明 -> 黒 -> 0)
395
+ lineart_image = lineart_image.convert("RGBA")
396
+ lineart_image = np.array(lineart_image)
397
+ lineart_image[:, :, 0] = 255 - lineart_image[:, :, 3]
398
+ lineart_image[:, :, 1] = 255 - lineart_image[:, :, 3]
399
+ lineart_image[:, :, 2] = 255 - lineart_image[:, :, 3]
400
+ lineart_image = Image.fromarray(lineart_image)
401
+ lineart_image = lineart_image.convert("RGBA")
402
+
403
+ result_image, unfinished = process(colored_image, lineart_image, alpha, thickness)
404
+
405
+ output_image = Image.alpha_composite(result_image, lineart_image)
406
+
407
+ name = randomname(10)
408
+
409
+ os.makedirs(f"{output_dir}/{name}")
410
+ output_image.save(f"{output_dir}/{name}/output_image.png")
411
+ result_image.save(f"{output_dir}/{name}/color_image.png")
412
+ unfinished.save(f"{output_dir}/{name}/unfinished_image.png")
413
+
414
+
415
+ if __name__ == "__main__":
416
+ main()
utils.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import string
3
+ import os
4
+
5
+ import requests
6
+ from tqdm import tqdm
7
+
8
+
9
+ def randomname(n):
10
+ randlst = [random.choice(string.ascii_letters + string.digits) for i in range(n)]
11
+ return ''.join(randlst)
12
+
13
+ def load_cn_model(model_dir):
14
+ folder = model_dir
15
+ file_name = 'diffusion_pytorch_model.safetensors'
16
+ url = "https://huggingface.co/kataragi/ControlNet-LineartXL/resolve/main/Katarag_lineartXL-fp16.safetensors"
17
+
18
+ file_path = os.path.join(folder, file_name)
19
+ if not os.path.exists(file_path):
20
+ response = requests.get(url, stream=True)
21
+
22
+ total_size = int(response.headers.get('content-length', 0))
23
+ with open(file_path, 'wb') as f, tqdm(
24
+ desc=file_name,
25
+ total=total_size,
26
+ unit='iB',
27
+ unit_scale=True,
28
+ unit_divisor=1024,
29
+ ) as bar:
30
+ for data in response.iter_content(chunk_size=1024):
31
+ size = f.write(data)
32
+ bar.update(size)
33
+
34
+ def load_cn_config(model_dir):
35
+ folder = model_dir
36
+ file_name = 'config.json'
37
+ url = "https://huggingface.co/mattyamonaca/controlnet_line2line_xl/resolve/main/config.json"
38
+
39
+ file_path = os.path.join(folder, file_name)
40
+ if not os.path.exists(file_path):
41
+ response = requests.get(url, stream=True)
42
+
43
+ total_size = int(response.headers.get('content-length', 0))
44
+ with open(file_path, 'wb') as f, tqdm(
45
+ desc=file_name,
46
+ total=total_size,
47
+ unit='iB',
48
+ unit_scale=True,
49
+ unit_divisor=1024,
50
+ ) as bar:
51
+ for data in response.iter_content(chunk_size=1024):
52
+ size = f.write(data)
53
+ bar.update(size)