import os import gradio as gr from faster_whisper import WhisperModel from moviepy.editor import VideoFileClip def convert_video_to_audio(video_input): video_clip = VideoFileClip(video_input) audio_clip = video_clip.audio audio_clip_filepath = os.path.normpath(f"{video_input.split('.')[0]}.m4a") audio_clip.write_audiofile(audio_clip_filepath, codec='aac') audio_clip.close() video_clip.close() return audio_clip_filepath def convert_seconds_to_time(seconds): seconds = float(seconds) hours, remainder = divmod(seconds, 3600) minutes, remainder = divmod(remainder, 60) whole_seconds = int(remainder) milliseconds = int((remainder - whole_seconds) * 1000) return f"{int(hours):02}:{int(minutes):02}:{whole_seconds:02},{milliseconds:03}" def write_srt(segments, max_words_per_line, srt_path): with open(srt_path, "w", encoding='utf-8') as file: result = '' result_clean = [] line_counter = 1 for _, segment in enumerate(segments): words_in_line = [] for w, word in enumerate(segment.words): words_in_line.append(word) # Write the line if max words limit reached or it's the last word in the segment if len(words_in_line) == max_words_per_line or w == len(segment.words) - 1: if words_in_line: # Check to avoid writing a line if there are no words start_time = convert_seconds_to_time(words_in_line[0].start) end_time = convert_seconds_to_time(words_in_line[-1].end) line_text = ' '.join([w.word.strip() for w in words_in_line]) result += f"{line_counter}\n{start_time} --> {end_time}\n{line_text}\n\n" result_clean += [line_text] # Reset for the next line and increment line counter line_counter += 1 words_in_line = [] # Reset words list for the next line file.write(result) return result, srt_path, " ".join(result_clean) def transcriber(file_input:gr.File, file_type: str, max_words_per_line:int, task:str, model_version:str): srt_filepath = os.path.normpath(f"{file_input.split('.')[0]}.srt") if file_type == "video" : audio_input = convert_video_to_audio(file_input) else: audio_input = file_input model = WhisperModel(model_version, device="cpu", compute_type="int8") segments, _ = model.transcribe( audio_input, beam_size=5, task=task, vad_filter=True, vad_parameters=dict(min_silence_duration_ms=500), word_timestamps=True ) return write_srt(segments=segments, max_words_per_line=max_words_per_line, srt_path=srt_filepath)