|
import gradio as gr |
|
from src.transcriber import transcriber |
|
|
|
def main(): |
|
with gr.Blocks(title='multilang-asr-transcriber', delete_cache=(86400, 86400), theme=gr.themes.Base()) as demo: |
|
gr.Markdown('## Multilang ASR Transcriber') |
|
gr.Markdown('An automatic speech recognition tool using [faster-whisper](https://github.com/SYSTRAN/faster-whisper). Supports multilingual video transcription and translation to english. Users may set the max words per line.') |
|
with gr.Tabs(selected="video") as tabs: |
|
with gr.Tab("Video", id="video"): |
|
video = True |
|
file = gr.File(file_types=["video"],type="filepath", label="Upload a video") |
|
file_type = gr.Radio(choices=["video"], value="video", label="File Type") |
|
max_words_per_line = gr.Number(value=6, label="Max words per line") |
|
task = gr.Radio(choices=["transcribe", "translate"], value="transcribe", label="Select Task") |
|
model_version = gr.Radio(choices=["deepdml/faster-whisper-large-v3-turbo-ct2", "large-v3"], value="deepdml/faster-whisper-large-v3-turbo-ct2", label="Select Model") |
|
text_output = gr.Textbox(label="SRT Text transcription", show_copy_button=True) |
|
srt_file = gr.File(file_count="single", type="filepath", file_types=[".srt"], label="SRT file") |
|
text_clean_output = gr.Textbox(label="Text transcription", show_copy_button=True) |
|
gr.Interface(transcriber, |
|
inputs=[file, file_type, max_words_per_line, task, model_version], |
|
outputs=[text_output, srt_file, text_clean_output], |
|
allow_flagging="never") |
|
|
|
with gr.Tab("Audio", id = "audio"): |
|
video = False |
|
file = gr.File(file_types=["audio"],type="filepath", label="Upload an audio file") |
|
file_type = gr.Radio(choices=["audio"], value="audio", label="File Type") |
|
max_words_per_line = gr.Number(value=6, label="Max words per line") |
|
task = gr.Radio(choices=["transcribe", "translate"], value="transcribe", label="Select Task") |
|
model_version = gr.Radio(choices=["deepdml/faster-whisper-large-v3-turbo-ct2", "large-v3"], value="deepdml/faster-whisper-large-v3-turbo-ct2", label="Select Model") |
|
text_output = gr.Textbox(label="SRT Text transcription", show_copy_button=True) |
|
srt_file = gr.File(file_count="single", type="filepath", file_types=[".srt"], label="SRT file") |
|
text_clean_output = gr.Textbox(label="Text transcription", show_copy_button=True) |
|
gr.Interface(transcriber, |
|
inputs=[file, file_type, max_words_per_line, task, model_version], |
|
outputs=[text_output, srt_file, text_clean_output], |
|
allow_flagging="never") |
|
demo.launch() |
|
|
|
if __name__ == '__main__': |
|
main() |