|
import os |
|
import gradio as gr |
|
from faster_whisper import WhisperModel |
|
from moviepy.editor import VideoFileClip |
|
|
|
def convert_video_to_audio(video_input): |
|
video_clip = VideoFileClip(video_input) |
|
audio_clip = video_clip.audio |
|
audio_clip_filepath = os.path.normpath(f"{video_input.split('.')[0]}.m4a") |
|
audio_clip.write_audiofile(audio_clip_filepath, codec='aac') |
|
audio_clip.close() |
|
video_clip.close() |
|
return audio_clip_filepath |
|
|
|
def convert_seconds_to_time(seconds): |
|
seconds = float(seconds) |
|
hours, remainder = divmod(seconds, 3600) |
|
minutes, remainder = divmod(remainder, 60) |
|
whole_seconds = int(remainder) |
|
milliseconds = int((remainder - whole_seconds) * 1000) |
|
return f"{int(hours):02}:{int(minutes):02}:{whole_seconds:02},{milliseconds:03}" |
|
|
|
def write_srt(segments, max_words_per_line, srt_path): |
|
with open(srt_path, "w", encoding='utf-8') as file: |
|
result = '' |
|
result_clean = [] |
|
line_counter = 1 |
|
for _, segment in enumerate(segments): |
|
words_in_line = [] |
|
for w, word in enumerate(segment.words): |
|
words_in_line.append(word) |
|
|
|
if len(words_in_line) == max_words_per_line or w == len(segment.words) - 1: |
|
if words_in_line: |
|
start_time = convert_seconds_to_time(words_in_line[0].start) |
|
end_time = convert_seconds_to_time(words_in_line[-1].end) |
|
line_text = ' '.join([w.word.strip() for w in words_in_line]) |
|
result += f"{line_counter}\n{start_time} --> {end_time}\n{line_text}\n\n" |
|
result_clean += [line_text] |
|
|
|
line_counter += 1 |
|
words_in_line = [] |
|
file.write(result) |
|
return result, srt_path, " ".join(result_clean) |
|
|
|
def transcriber(file_input:gr.File, |
|
file_type: str, |
|
max_words_per_line:int, |
|
task:str, |
|
model_version:str): |
|
srt_filepath = os.path.normpath(f"{file_input.split('.')[0]}.srt") |
|
if file_type == "video" : |
|
audio_input = convert_video_to_audio(file_input) |
|
else: |
|
audio_input = file_input |
|
model = WhisperModel(model_version, device="cpu", compute_type="int8") |
|
segments, _ = model.transcribe( |
|
audio_input, |
|
beam_size=5, |
|
task=task, |
|
vad_filter=True, |
|
vad_parameters=dict(min_silence_duration_ms=500), |
|
word_timestamps=True |
|
) |
|
return write_srt(segments=segments, max_words_per_line=max_words_per_line, srt_path=srt_filepath) |