marcop commited on
Commit
d6c7221
·
1 Parent(s): 85afa3b

Add first version

Browse files
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🚀
4
  colorFrom: purple
5
  colorTo: blue
6
  sdk: gradio
7
- sdk_version: 3.0.24
8
  app_file: app.py
9
  pinned: false
10
  license: cc-by-4.0
 
4
  colorFrom: purple
5
  colorTo: blue
6
  sdk: gradio
7
+ sdk_version: 2.5.2
8
  app_file: app.py
9
  pinned: false
10
  license: cc-by-4.0
__pycache__/layers.cpython-39.pyc ADDED
Binary file (5.8 kB). View file
 
__pycache__/models.cpython-39.pyc ADDED
Binary file (13.5 kB). View file
 
__pycache__/parse_test.cpython-39.pyc ADDED
Binary file (3.47 kB). View file
 
__pycache__/utils.cpython-39.pyc ADDED
Binary file (16.5 kB). View file
 
app.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from parse_test import parse_args
2
+ from models import Models_functions
3
+ from utils import Utils_functions
4
+
5
+
6
+ # parse args
7
+ args = parse_args()
8
+
9
+ # initialize networks
10
+ M = Models_functions(args)
11
+ models_ls_techno, models_ls_classical = M.get_networks()
12
+
13
+ # test musika
14
+ U = Utils_functions(args)
15
+ U.render_gradio(models_ls_techno, models_ls_classical, train=False)
checkpoints/classical/dec.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32e50f938685f56e1dc5e137e95c59472418194125e435cafb668584e65b0fcc
3
+ size 29745512
checkpoints/classical/dec2.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:643e1415f5ebf34cb067b2ccaced657f1f3e3f068810c2d130dfc3abb20c3cc2
3
+ size 26799136
checkpoints/classical/gen_ema.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1508fa1fad225f7c29ed64252b531e4462c97b0f0c80dd6d212014916f6261eb
3
+ size 56431944
checkpoints/techno/dec.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:953f70f8c874d36fd57dfd825b3bceff2f7dba04c93f4a1464c0c5d223c2b2e7
3
+ size 29745512
checkpoints/techno/dec2.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd0a9e2eb78bae5178dd25022b4d0ac5020a6366c98fa009830c6c8818582045
3
+ size 26799136
checkpoints/techno/gen_ema.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a81012a6bc318e23bb12ed0fc70260d260e71c9b355b553593c60bfec0fab41
3
+ size 56431944
layers.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ import tensorflow.keras.backend as K
3
+ from tensorflow.keras.layers import Conv2D, Conv2DTranspose, Dense
4
+ from tensorflow.python.eager import context
5
+ from tensorflow.python.framework import tensor_shape
6
+ from tensorflow.python.keras import activations, constraints, initializers, regularizers
7
+ from tensorflow.python.keras.layers.convolutional import SeparableConv
8
+ from tensorflow.python.ops import (
9
+ array_ops,
10
+ gen_math_ops,
11
+ math_ops,
12
+ sparse_ops,
13
+ standard_ops,
14
+ )
15
+
16
+
17
+ def l2normalize(v, eps=1e-12):
18
+ return v / (tf.norm(v) + eps)
19
+
20
+
21
+ class ConvSN2D(tf.keras.layers.Conv2D):
22
+ def __init__(self, filters, kernel_size, power_iterations=1, **kwargs):
23
+ super(ConvSN2D, self).__init__(filters, kernel_size, **kwargs)
24
+ self.power_iterations = power_iterations
25
+
26
+ def build(self, input_shape):
27
+ super(ConvSN2D, self).build(input_shape)
28
+
29
+ if self.data_format == "channels_first":
30
+ channel_axis = 1
31
+ else:
32
+ channel_axis = -1
33
+
34
+ self.u = self.add_weight(
35
+ self.name + "_u",
36
+ shape=tuple([1, self.kernel.shape.as_list()[-1]]),
37
+ initializer=tf.initializers.RandomNormal(0, 1),
38
+ trainable=False,
39
+ dtype=self.dtype,
40
+ )
41
+
42
+ def compute_spectral_norm(self, W, new_u, W_shape):
43
+ for _ in range(self.power_iterations):
44
+
45
+ new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
46
+ new_u = l2normalize(tf.matmul(new_v, W))
47
+
48
+ sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
49
+ W_bar = W / sigma
50
+
51
+ with tf.control_dependencies([self.u.assign(new_u)]):
52
+ W_bar = tf.reshape(W_bar, W_shape)
53
+
54
+ return W_bar
55
+
56
+ def call(self, inputs):
57
+ W_shape = self.kernel.shape.as_list()
58
+ W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
59
+ new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
60
+ outputs = self._convolution_op(inputs, new_kernel)
61
+
62
+ if self.use_bias:
63
+ if self.data_format == "channels_first":
64
+ outputs = tf.nn.bias_add(outputs, self.bias, data_format="NCHW")
65
+ else:
66
+ outputs = tf.nn.bias_add(outputs, self.bias, data_format="NHWC")
67
+ if self.activation is not None:
68
+ return self.activation(outputs)
69
+
70
+ return outputs
71
+
72
+
73
+ class DenseSN(Dense):
74
+ def build(self, input_shape):
75
+ super(DenseSN, self).build(input_shape)
76
+
77
+ self.u = self.add_weight(
78
+ self.name + "_u",
79
+ shape=tuple([1, self.kernel.shape.as_list()[-1]]),
80
+ initializer=tf.initializers.RandomNormal(0, 1),
81
+ trainable=False,
82
+ dtype=self.dtype,
83
+ )
84
+
85
+ def compute_spectral_norm(self, W, new_u, W_shape):
86
+ new_v = l2normalize(tf.matmul(new_u, tf.transpose(W)))
87
+ new_u = l2normalize(tf.matmul(new_v, W))
88
+ sigma = tf.matmul(tf.matmul(new_v, W), tf.transpose(new_u))
89
+ W_bar = W / sigma
90
+ with tf.control_dependencies([self.u.assign(new_u)]):
91
+ W_bar = tf.reshape(W_bar, W_shape)
92
+ return W_bar
93
+
94
+ def call(self, inputs):
95
+ W_shape = self.kernel.shape.as_list()
96
+ W_reshaped = tf.reshape(self.kernel, (-1, W_shape[-1]))
97
+ new_kernel = self.compute_spectral_norm(W_reshaped, self.u, W_shape)
98
+ rank = len(inputs.shape)
99
+ if rank > 2:
100
+ outputs = standard_ops.tensordot(inputs, new_kernel, [[rank - 1], [0]])
101
+ if not context.executing_eagerly():
102
+ shape = inputs.shape.as_list()
103
+ output_shape = shape[:-1] + [self.units]
104
+ outputs.set_shape(output_shape)
105
+ else:
106
+ inputs = math_ops.cast(inputs, self._compute_dtype)
107
+ if K.is_sparse(inputs):
108
+ outputs = sparse_ops.sparse_tensor_dense_matmul(inputs, new_kernel)
109
+ else:
110
+ outputs = gen_math_ops.mat_mul(inputs, new_kernel)
111
+ if self.use_bias:
112
+ outputs = tf.nn.bias_add(outputs, self.bias)
113
+ if self.activation is not None:
114
+ return self.activation(outputs)
115
+ return outputs
116
+
117
+
118
+ class AddNoise(tf.keras.layers.Layer):
119
+ def build(self, input_shape):
120
+ self.b = self.add_weight(
121
+ shape=[
122
+ 1,
123
+ ],
124
+ initializer=tf.keras.initializers.zeros(),
125
+ trainable=True,
126
+ name="noise_weight",
127
+ )
128
+
129
+ def call(self, inputs):
130
+ rand = tf.random.normal(
131
+ [tf.shape(inputs)[0], inputs.shape[1], inputs.shape[2], 1],
132
+ mean=0.0,
133
+ stddev=1.0,
134
+ dtype=self.dtype,
135
+ )
136
+ output = inputs + self.b * rand
137
+ return output
138
+
139
+
140
+ class PosEnc(tf.keras.layers.Layer):
141
+ def __init__(self, **kwargs):
142
+ super(PosEnc, self).__init__(**kwargs)
143
+
144
+ def call(self, inputs):
145
+ # inputs shape: [bs,mel_bins,shape,1]
146
+ pos = tf.repeat(
147
+ tf.reshape(tf.range(inputs.shape[-3], dtype=tf.int32), [1, -1, 1, 1]),
148
+ inputs.shape[-2],
149
+ -2,
150
+ )
151
+ pos = tf.cast(tf.repeat(pos, tf.shape(inputs)[0], 0), self.dtype) / tf.cast(
152
+ inputs.shape[-3], self.dtype
153
+ )
154
+ return tf.concat([inputs, pos], -1) # [bs,1,hop,2]
155
+
156
+
157
+ def flatten_hw(x, data_format="channels_last"):
158
+ if data_format == "channels_last":
159
+ x = tf.transpose(x, perm=[0, 3, 1, 2]) # Convert to `channels_first`
160
+
161
+ old_shape = tf.shape(x)
162
+ new_shape = [old_shape[0], old_shape[2] * old_shape[3], old_shape[1]]
163
+
164
+ return tf.reshape(x, new_shape)
models.py ADDED
@@ -0,0 +1,831 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import tensorflow as tf
3
+ import tensorflow_addons as tfa
4
+ from tensorflow.keras import mixed_precision
5
+ from tensorflow.keras.layers import (
6
+ Add,
7
+ BatchNormalization,
8
+ Concatenate,
9
+ Conv2D,
10
+ Conv2DTranspose,
11
+ Cropping1D,
12
+ Cropping2D,
13
+ Dense,
14
+ Dot,
15
+ Flatten,
16
+ GlobalAveragePooling2D,
17
+ Input,
18
+ Lambda,
19
+ LeakyReLU,
20
+ Multiply,
21
+ ReLU,
22
+ Reshape,
23
+ SeparableConv2D,
24
+ UpSampling2D,
25
+ ZeroPadding2D,
26
+ )
27
+ from tensorflow.keras.models import Model, Sequential
28
+ from tensorflow.keras.optimizers import Adam
29
+ from tensorflow.python.keras.utils.layer_utils import count_params
30
+
31
+ from layers import ConvSN2D, DenseSN, PosEnc, AddNoise
32
+
33
+
34
+ class Models_functions:
35
+ def __init__(self, args):
36
+
37
+ self.args = args
38
+ if self.args.mixed_precision:
39
+ self.mixed_precision = mixed_precision
40
+ self.policy = mixed_precision.Policy("mixed_float16")
41
+ mixed_precision.set_global_policy(self.policy)
42
+ self.init = tf.keras.initializers.he_uniform()
43
+
44
+ def conv_util(
45
+ self,
46
+ inp,
47
+ filters,
48
+ kernel_size=(1, 3),
49
+ strides=(1, 1),
50
+ noise=False,
51
+ upsample=False,
52
+ padding="same",
53
+ bn=True,
54
+ ):
55
+
56
+ x = inp
57
+
58
+ if upsample:
59
+ x = tf.keras.layers.Conv2DTranspose(
60
+ filters,
61
+ kernel_size=kernel_size,
62
+ strides=strides,
63
+ activation="linear",
64
+ padding=padding,
65
+ kernel_initializer=self.init,
66
+ )(x)
67
+ else:
68
+ x = tf.keras.layers.Conv2D(
69
+ filters,
70
+ kernel_size=kernel_size,
71
+ strides=strides,
72
+ activation="linear",
73
+ padding=padding,
74
+ kernel_initializer=self.init,
75
+ )(x)
76
+
77
+ if noise:
78
+ x = AddNoise()(x)
79
+
80
+ if bn:
81
+ x = tf.keras.layers.BatchNormalization()(x)
82
+
83
+ x = tf.keras.activations.swish(x)
84
+
85
+ return x
86
+
87
+ def adain(self, x, emb):
88
+ emb = tf.keras.layers.Conv2D(
89
+ x.shape[-1],
90
+ kernel_size=(1, 1),
91
+ strides=1,
92
+ activation="linear",
93
+ padding="same",
94
+ kernel_initializer=self.init,
95
+ use_bias=True,
96
+ )(emb)
97
+ x = x / (tf.math.reduce_std(x, -2, keepdims=True) + 1e-7)
98
+ return x * emb
99
+
100
+ def se_layer(self, x, filters):
101
+ x = tf.reduce_mean(x, -2, keepdims=True)
102
+ x = tf.keras.layers.Conv2D(
103
+ filters,
104
+ kernel_size=(1, 1),
105
+ strides=(1, 1),
106
+ activation="linear",
107
+ padding="valid",
108
+ kernel_initializer=self.init,
109
+ use_bias=True,
110
+ )(x)
111
+ x = tf.keras.activations.swish(x)
112
+ return tf.keras.layers.Conv2D(
113
+ filters,
114
+ kernel_size=(1, 1),
115
+ strides=(1, 1),
116
+ activation="sigmoid",
117
+ padding="valid",
118
+ kernel_initializer=self.init,
119
+ use_bias=True,
120
+ )(x)
121
+
122
+ def conv_util_gen(
123
+ self,
124
+ inp,
125
+ filters,
126
+ kernel_size=(1, 9),
127
+ strides=(1, 1),
128
+ noise=False,
129
+ upsample=False,
130
+ emb=None,
131
+ se1=None,
132
+ ):
133
+
134
+ x = inp
135
+
136
+ if upsample:
137
+ x = tf.keras.layers.Conv2DTranspose(
138
+ filters,
139
+ kernel_size=kernel_size,
140
+ strides=strides,
141
+ activation="linear",
142
+ padding="same",
143
+ kernel_initializer=self.init,
144
+ use_bias=True,
145
+ )(x)
146
+ else:
147
+ x = tf.keras.layers.Conv2D(
148
+ filters,
149
+ kernel_size=kernel_size,
150
+ strides=strides,
151
+ activation="linear",
152
+ padding="same",
153
+ kernel_initializer=self.init,
154
+ use_bias=True,
155
+ )(x)
156
+
157
+ if noise:
158
+ x = AddNoise()(x)
159
+
160
+ if emb is not None:
161
+ x = self.adain(x, emb)
162
+ else:
163
+ x = tf.keras.layers.BatchNormalization()(x)
164
+
165
+ x1 = tf.keras.activations.swish(x)
166
+
167
+ if se1 is not None:
168
+ x1 = x1 * se1
169
+
170
+ return x1
171
+
172
+ def res_block_disc(self, inp, filters, kernel_size=(1, 3), kernel_size_2=None, strides=(1, 1)):
173
+
174
+ if kernel_size_2 is None:
175
+ kernel_size_2 = kernel_size
176
+
177
+ x = tf.keras.layers.Conv2D(
178
+ inp.shape[-1],
179
+ kernel_size=kernel_size_2,
180
+ strides=1,
181
+ activation="linear",
182
+ padding="same",
183
+ kernel_initializer=self.init,
184
+ )(inp)
185
+ x = tf.keras.layers.LeakyReLU(0.2)(x)
186
+ x = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * x
187
+ x = tf.keras.layers.Conv2D(
188
+ filters,
189
+ kernel_size=kernel_size,
190
+ strides=strides,
191
+ activation="linear",
192
+ padding="same",
193
+ kernel_initializer=self.init,
194
+ )(x)
195
+ x = tf.keras.layers.LeakyReLU(0.2)(x)
196
+ x = tf.math.sqrt(tf.cast(0.5, self.args.datatype)) * x
197
+
198
+ if strides != (1, 1):
199
+ inp = tf.keras.layers.AveragePooling2D(strides, padding="same")(inp)
200
+
201
+ if inp.shape[-1] != filters:
202
+ inp = tf.keras.layers.Conv2D(
203
+ filters,
204
+ kernel_size=1,
205
+ strides=1,
206
+ activation="linear",
207
+ padding="same",
208
+ kernel_initializer=self.init,
209
+ use_bias=False,
210
+ )(inp)
211
+
212
+ return x + inp
213
+
214
+ def build_encoder2(self):
215
+
216
+ dim = 128
217
+
218
+ inpf = Input((1, self.args.shape, dim))
219
+
220
+ inpfls = tf.split(inpf, 16, -2)
221
+ inpb = tf.concat(inpfls, 0)
222
+
223
+ g0 = self.conv_util(inpb, 256, kernel_size=(1, 1), strides=(1, 1), padding="valid")
224
+ g1 = self.conv_util(g0, 256 + 256, kernel_size=(1, 3), strides=(1, 1), padding="valid")
225
+ g2 = self.conv_util(g1, 512 + 128, kernel_size=(1, 3), strides=(1, 1), padding="valid")
226
+ g3 = self.conv_util(g2, 512 + 128, kernel_size=(1, 1), strides=(1, 1), padding="valid")
227
+ g4 = self.conv_util(g3, 512 + 256, kernel_size=(1, 3), strides=(1, 1), padding="valid")
228
+ g5 = self.conv_util(g4, 512 + 256, kernel_size=(1, 2), strides=(1, 1), padding="valid")
229
+
230
+ g = tf.keras.layers.Conv2D(
231
+ 64,
232
+ kernel_size=(1, 1),
233
+ strides=1,
234
+ padding="valid",
235
+ kernel_initializer=self.init,
236
+ name="cbottle",
237
+ activation="tanh",
238
+ )(g5)
239
+
240
+ gls = tf.split(g, 16, 0)
241
+ g = tf.concat(gls, -2)
242
+ gls = tf.split(g, 2, -2)
243
+ g = tf.concat(gls, 0)
244
+
245
+ gf = tf.cast(g, tf.float32)
246
+ return Model(inpf, gf, name="ENC2")
247
+
248
+ def build_decoder2(self):
249
+
250
+ dim = 128
251
+ bottledim = 64
252
+
253
+ inpf = Input((1, self.args.shape // 16, bottledim))
254
+
255
+ g = inpf
256
+
257
+ g = self.conv_util(
258
+ g,
259
+ 512 + 128 + 128,
260
+ kernel_size=(1, 4),
261
+ strides=(1, 1),
262
+ upsample=False,
263
+ noise=True,
264
+ )
265
+ g = self.conv_util(
266
+ g,
267
+ 512 + 128 + 128,
268
+ kernel_size=(1, 4),
269
+ strides=(1, 2),
270
+ upsample=True,
271
+ noise=True,
272
+ )
273
+ g = self.conv_util(g, 512 + 128, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True)
274
+ g = self.conv_util(g, 512, kernel_size=(1, 4), strides=(1, 1), upsample=False, noise=True)
275
+ g = self.conv_util(g, 256 + 128, kernel_size=(1, 4), strides=(1, 2), upsample=True, noise=True)
276
+
277
+ gf = tf.keras.layers.Conv2D(
278
+ dim,
279
+ kernel_size=(1, 1),
280
+ strides=1,
281
+ padding="same",
282
+ activation="tanh",
283
+ kernel_initializer=self.init,
284
+ )(g)
285
+
286
+ gfls = tf.split(gf, 2, 0)
287
+ gf = tf.concat(gfls, -2)
288
+
289
+ gf = tf.cast(gf, tf.float32)
290
+
291
+ return Model(inpf, gf, name="DEC2")
292
+
293
+ def build_encoder(self):
294
+
295
+ dim = ((4 * self.args.hop) // 2) + 1
296
+
297
+ inpf = Input((dim, self.args.shape, 1))
298
+
299
+ ginp = tf.transpose(inpf, [0, 3, 2, 1])
300
+
301
+ g0 = self.conv_util(
302
+ ginp,
303
+ self.args.hop * 2 + 32,
304
+ kernel_size=(1, 1),
305
+ strides=(1, 1),
306
+ padding="valid",
307
+ )
308
+
309
+ g = self.conv_util(
310
+ g0,
311
+ self.args.hop * 2 + 64,
312
+ kernel_size=(1, 1),
313
+ strides=(1, 1),
314
+ padding="valid",
315
+ )
316
+ g = self.conv_util(
317
+ g,
318
+ self.args.hop * 2 + 64 + 64,
319
+ kernel_size=(1, 1),
320
+ strides=(1, 1),
321
+ padding="valid",
322
+ )
323
+ g = self.conv_util(
324
+ g,
325
+ self.args.hop * 2 + 128 + 64,
326
+ kernel_size=(1, 1),
327
+ strides=(1, 1),
328
+ padding="valid",
329
+ )
330
+ g = self.conv_util(
331
+ g,
332
+ self.args.hop * 2 + 128 + 128,
333
+ kernel_size=(1, 1),
334
+ strides=(1, 1),
335
+ padding="valid",
336
+ )
337
+
338
+ g = tf.keras.layers.Conv2D(
339
+ 128,
340
+ kernel_size=(1, 1),
341
+ strides=1,
342
+ padding="valid",
343
+ kernel_initializer=self.init,
344
+ )(g)
345
+ gb = tf.keras.activations.tanh(g)
346
+
347
+ gbls = tf.split(gb, 2, -2)
348
+ gb = tf.concat(gbls, 0)
349
+
350
+ gb = tf.cast(gb, tf.float32)
351
+ return Model(inpf, gb, name="ENC")
352
+
353
+ def build_decoder(self):
354
+
355
+ dim = ((4 * self.args.hop) // 2) + 1
356
+
357
+ inpf = Input((1, self.args.shape // 2, 128))
358
+
359
+ g = inpf
360
+
361
+ g0 = self.conv_util(g, self.args.hop * 3, kernel_size=(1, 1), strides=(1, 1), noise=True)
362
+
363
+ g1 = self.conv_util(g0, self.args.hop * 2, kernel_size=(1, 3), strides=(1, 2), noise=True)
364
+ g2 = self.conv_util(
365
+ g1,
366
+ self.args.hop + self.args.hop // 2,
367
+ kernel_size=(1, 3),
368
+ strides=(1, 2),
369
+ noise=True,
370
+ )
371
+ g = self.conv_util(
372
+ g2,
373
+ self.args.hop + self.args.hop // 4,
374
+ kernel_size=(1, 3),
375
+ strides=(1, 2),
376
+ noise=True,
377
+ )
378
+
379
+ g = self.conv_util(
380
+ g,
381
+ self.args.hop + self.args.hop // 2,
382
+ kernel_size=(1, 4),
383
+ strides=(1, 2),
384
+ upsample=True,
385
+ noise=True,
386
+ )
387
+ g = self.conv_util(
388
+ g + g2,
389
+ self.args.hop * 2,
390
+ kernel_size=(1, 4),
391
+ strides=(1, 2),
392
+ upsample=True,
393
+ noise=True,
394
+ )
395
+ g = self.conv_util(
396
+ g + g1,
397
+ self.args.hop * 3,
398
+ kernel_size=(1, 4),
399
+ strides=(1, 2),
400
+ upsample=True,
401
+ noise=True,
402
+ )
403
+
404
+ g = self.conv_util(g + g0, self.args.hop * 5, kernel_size=(1, 1), strides=(1, 1), noise=True)
405
+
406
+ g = Conv2D(
407
+ dim * 2,
408
+ kernel_size=(1, 1),
409
+ strides=(1, 1),
410
+ kernel_initializer=self.init,
411
+ padding="same",
412
+ )(g)
413
+ g = tf.clip_by_value(g, -1.0, 1.0)
414
+
415
+ gf, pf = tf.split(g, 2, -1)
416
+
417
+ gfls = tf.split(gf, self.args.shape // self.args.window, 0)
418
+ gf = tf.concat(gfls, -2)
419
+
420
+ pfls = tf.split(pf, self.args.shape // self.args.window, 0)
421
+ pf = tf.concat(pfls, -2)
422
+
423
+ s = tf.transpose(gf, [0, 2, 3, 1])
424
+ p = tf.transpose(pf, [0, 2, 3, 1])
425
+
426
+ s = tf.cast(tf.squeeze(s, -1), tf.float32)
427
+ p = tf.cast(tf.squeeze(p, -1), tf.float32)
428
+
429
+ return Model(inpf, [s, p], name="DEC")
430
+
431
+ def build_critic(self):
432
+
433
+ sinp = Input(shape=(1, self.args.latlen, self.args.latdepth * 2))
434
+
435
+ dim = 64 * 2
436
+
437
+ sf = tf.keras.layers.Conv2D(
438
+ self.args.latdepth * 4,
439
+ kernel_size=(1, 1),
440
+ strides=(1, 1),
441
+ activation="linear",
442
+ padding="valid",
443
+ kernel_initializer=self.init,
444
+ use_bias=False,
445
+ trainable=False,
446
+ )(sinp)
447
+
448
+ sf = tf.keras.layers.Conv2D(
449
+ 256 + 128,
450
+ kernel_size=(1, 3),
451
+ strides=(1, 2),
452
+ activation="linear",
453
+ padding="same",
454
+ kernel_initializer=self.init,
455
+ )(sf)
456
+ sf = tf.keras.layers.LeakyReLU(0.2)(sf)
457
+ sf = self.res_block_disc(sf, 256 + 128 + 128, kernel_size=(1, 3), strides=(1, 2))
458
+ sf = self.res_block_disc(sf, 512 + 128, kernel_size=(1, 3), strides=(1, 2))
459
+ sf = self.res_block_disc(sf, 512 + 256, kernel_size=(1, 3), strides=(1, 2))
460
+ sf = self.res_block_disc(sf, 512 + 128 + 256, kernel_size=(1, 3), strides=(1, 2))
461
+ sfo = self.res_block_disc(sf, 512 + 512, kernel_size=(1, 3), strides=(1, 2), kernel_size_2=(1, 1))
462
+ sf = sfo
463
+
464
+ gf = tf.keras.layers.Dense(1, activation="linear", use_bias=True, kernel_initializer=self.init)(Flatten()(sf))
465
+
466
+ gf = tf.cast(gf, tf.float32)
467
+ sfo = tf.cast(sfo, tf.float32)
468
+
469
+ return Model(sinp, [gf, sfo], name="C")
470
+
471
+ def build_critic_rec(self):
472
+
473
+ sinp = Input(shape=(1, self.args.latlen // 64, 512 + 512))
474
+
475
+ dim = self.args.latdepth * 2
476
+
477
+ sf = tf.keras.layers.Conv2DTranspose(
478
+ 512,
479
+ kernel_size=(1, 4),
480
+ strides=(1, 2),
481
+ activation="linear",
482
+ padding="same",
483
+ kernel_initializer=self.init,
484
+ )(sinp)
485
+ sf = tf.keras.layers.LeakyReLU(0.2)(sf)
486
+
487
+ sf = tf.keras.layers.Conv2DTranspose(
488
+ 256 + 128 + 64,
489
+ kernel_size=(1, 4),
490
+ strides=(1, 2),
491
+ activation="linear",
492
+ padding="same",
493
+ kernel_initializer=self.init,
494
+ )(sf)
495
+ sf = tf.keras.layers.LeakyReLU(0.2)(sf)
496
+ sf = tf.keras.layers.Conv2DTranspose(
497
+ 256 + 128,
498
+ kernel_size=(1, 4),
499
+ strides=(1, 2),
500
+ activation="linear",
501
+ padding="same",
502
+ kernel_initializer=self.init,
503
+ )(sf)
504
+ sf = tf.keras.layers.LeakyReLU(0.2)(sf)
505
+ sf = tf.keras.layers.Conv2DTranspose(
506
+ 256 + 64,
507
+ kernel_size=(1, 4),
508
+ strides=(1, 2),
509
+ activation="linear",
510
+ padding="same",
511
+ kernel_initializer=self.init,
512
+ )(sf)
513
+ sf = tf.keras.layers.LeakyReLU(0.2)(sf)
514
+ sf = tf.keras.layers.Conv2DTranspose(
515
+ 256,
516
+ kernel_size=(1, 4),
517
+ strides=(1, 2),
518
+ activation="linear",
519
+ padding="same",
520
+ kernel_initializer=self.init,
521
+ )(sf)
522
+ sf = tf.keras.layers.LeakyReLU(0.2)(sf)
523
+ sf = tf.keras.layers.Conv2DTranspose(
524
+ 128 + 64,
525
+ kernel_size=(1, 4),
526
+ strides=(1, 2),
527
+ activation="linear",
528
+ padding="same",
529
+ kernel_initializer=self.init,
530
+ )(sf)
531
+ sf = tf.keras.layers.LeakyReLU(0.2)(sf)
532
+
533
+ gf = tf.keras.layers.Conv2D(
534
+ dim,
535
+ kernel_size=(1, 1),
536
+ strides=(1, 1),
537
+ activation="tanh",
538
+ padding="same",
539
+ kernel_initializer=self.init,
540
+ )(sf)
541
+
542
+ gf = tf.cast(gf, tf.float32)
543
+
544
+ return Model(sinp, gf, name="CR")
545
+
546
+ def build_generator(self):
547
+
548
+ dim = self.args.latdepth * 2
549
+
550
+ inpf = Input((self.args.latlen, self.args.latdepth * 2))
551
+
552
+ inpfls = tf.split(inpf, 2, -2)
553
+ inpb = tf.concat(inpfls, 0)
554
+
555
+ inpg = tf.reduce_mean(inpb, -2)
556
+ inp1 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(tf.expand_dims(inpb, -3))
557
+ inp2 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp1)
558
+ inp3 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp2)
559
+ inp4 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp3)
560
+ inp5 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp4)
561
+ inp6 = tf.keras.layers.AveragePooling2D((1, 2), padding="valid")(inp5)
562
+
563
+ g = tf.keras.layers.Dense(
564
+ 4 * (512 + 256 + 128),
565
+ activation="linear",
566
+ use_bias=True,
567
+ kernel_initializer=self.init,
568
+ )(Flatten()(inp6))
569
+ g = tf.keras.layers.Reshape((1, 4, 512 + 256 + 128))(g)
570
+ g = AddNoise()(g)
571
+ g = self.adain(g, inp5)
572
+ g = tf.keras.activations.swish(g)
573
+
574
+ g = self.conv_util_gen(
575
+ g,
576
+ 512 + 256,
577
+ kernel_size=(1, 4),
578
+ strides=(1, 2),
579
+ upsample=True,
580
+ noise=True,
581
+ emb=inp4,
582
+ )
583
+ g1 = self.conv_util_gen(
584
+ g,
585
+ 512 + 256,
586
+ kernel_size=(1, 1),
587
+ strides=(1, 1),
588
+ upsample=False,
589
+ noise=True,
590
+ emb=inp4,
591
+ )
592
+ g2 = self.conv_util_gen(
593
+ g1,
594
+ 512 + 128,
595
+ kernel_size=(1, 4),
596
+ strides=(1, 2),
597
+ upsample=True,
598
+ noise=True,
599
+ emb=inp3,
600
+ )
601
+ g2b = self.conv_util_gen(
602
+ g2,
603
+ 512 + 128,
604
+ kernel_size=(1, 3),
605
+ strides=(1, 1),
606
+ upsample=False,
607
+ noise=True,
608
+ emb=inp3,
609
+ )
610
+ g3 = self.conv_util_gen(
611
+ g2b,
612
+ 256 + 256,
613
+ kernel_size=(1, 4),
614
+ strides=(1, 2),
615
+ upsample=True,
616
+ noise=True,
617
+ emb=inp2,
618
+ se1=self.se_layer(g, 256 + 256),
619
+ )
620
+ g3 = self.conv_util_gen(
621
+ g3,
622
+ 256 + 256,
623
+ kernel_size=(1, 3),
624
+ strides=(1, 1),
625
+ upsample=False,
626
+ noise=True,
627
+ emb=inp2,
628
+ se1=self.se_layer(g1, 256 + 256),
629
+ )
630
+ g4 = self.conv_util_gen(
631
+ g3,
632
+ 256 + 128,
633
+ kernel_size=(1, 4),
634
+ strides=(1, 2),
635
+ upsample=True,
636
+ noise=True,
637
+ emb=inp1,
638
+ se1=self.se_layer(g2, 256 + 128),
639
+ )
640
+ g4 = self.conv_util_gen(
641
+ g4,
642
+ 256 + 128,
643
+ kernel_size=(1, 3),
644
+ strides=(1, 1),
645
+ upsample=False,
646
+ noise=True,
647
+ emb=inp1,
648
+ se1=self.se_layer(g2b, 256 + 128),
649
+ )
650
+ g5 = self.conv_util_gen(
651
+ g4,
652
+ 256,
653
+ kernel_size=(1, 4),
654
+ strides=(1, 2),
655
+ upsample=True,
656
+ noise=True,
657
+ emb=tf.expand_dims(tf.cast(inpb, dtype=self.args.datatype), -3),
658
+ )
659
+
660
+ gf = tf.keras.layers.Conv2D(
661
+ dim,
662
+ kernel_size=(1, 1),
663
+ strides=(1, 1),
664
+ kernel_initializer=self.init,
665
+ padding="same",
666
+ activation="tanh",
667
+ )(g5)
668
+
669
+ gfls = tf.split(gf, 2, 0)
670
+ gf = tf.concat(gfls, -2)
671
+
672
+ gf = tf.cast(gf, tf.float32)
673
+
674
+ return Model(inpf, gf, name="GEN")
675
+
676
+ # Load past models from path to resume training or test
677
+ def load(self, path, load_dec=False):
678
+ gen = self.build_generator()
679
+ critic = self.build_critic()
680
+ enc = self.build_encoder()
681
+ dec = self.build_decoder()
682
+ enc2 = self.build_encoder2()
683
+ dec2 = self.build_decoder2()
684
+ critic_rec = self.build_critic_rec()
685
+ gen_ema = self.build_generator()
686
+
687
+ if self.args.mixed_precision:
688
+ opt_disc = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.9))
689
+ opt_dec = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.9))
690
+ else:
691
+ opt_disc = tf.keras.optimizers.Adam(0.0001, 0.9)
692
+ opt_dec = tf.keras.optimizers.Adam(0.0001, 0.9)
693
+
694
+ if load_dec:
695
+ dec.load_weights(self.args.dec_path + "/dec.h5")
696
+ dec2.load_weights(self.args.dec_path + "/dec2.h5")
697
+
698
+ else:
699
+ grad_vars = critic.trainable_weights + critic_rec.trainable_weights
700
+ zero_grads = [tf.zeros_like(w) for w in grad_vars]
701
+ opt_disc.apply_gradients(zip(zero_grads, grad_vars))
702
+
703
+ grad_vars = gen.trainable_variables
704
+ zero_grads = [tf.zeros_like(w) for w in grad_vars]
705
+ opt_dec.apply_gradients(zip(zero_grads, grad_vars))
706
+
707
+ if not self.args.testing:
708
+ opt_disc.set_weights(np.load(path + "/opt_disc.npy", allow_pickle=True))
709
+ opt_dec.set_weights(np.load(path + "/opt_dec.npy", allow_pickle=True))
710
+
711
+ if not self.args.testing:
712
+ critic.load_weights(path + "/critic.h5")
713
+ gen.load_weights(path + "/gen.h5")
714
+ enc.load_weights(path + "/enc.h5")
715
+ enc2.load_weights(path + "/enc2.h5")
716
+ critic_rec.load_weights(path + "/critic_rec.h5")
717
+ gen_ema.load_weights(path + "/gen_ema.h5")
718
+ dec.load_weights(path + "/dec.h5")
719
+ dec2.load_weights(path + "/dec2.h5")
720
+
721
+ return (
722
+ critic,
723
+ gen,
724
+ enc,
725
+ dec,
726
+ enc2,
727
+ dec2,
728
+ critic_rec,
729
+ gen_ema,
730
+ [opt_dec, opt_disc],
731
+ )
732
+
733
+ def build(self):
734
+ gen = self.build_generator()
735
+ critic = self.build_critic()
736
+ enc = self.build_encoder()
737
+ dec = self.build_decoder()
738
+ enc2 = self.build_encoder2()
739
+ dec2 = self.build_decoder2()
740
+ critic_rec = self.build_critic_rec()
741
+ gen_ema = self.build_generator()
742
+
743
+ gen_ema = tf.keras.models.clone_model(gen)
744
+ gen_ema.set_weights(gen.get_weights())
745
+
746
+ if self.args.mixed_precision:
747
+ opt_disc = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.9))
748
+ opt_dec = self.mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(0.0001, 0.9))
749
+ else:
750
+ opt_disc = tf.keras.optimizers.Adam(0.0001, 0.9)
751
+ opt_dec = tf.keras.optimizers.Adam(0.0001, 0.9)
752
+
753
+ return (
754
+ critic,
755
+ gen,
756
+ enc,
757
+ dec,
758
+ enc2,
759
+ dec2,
760
+ critic_rec,
761
+ gen_ema,
762
+ [opt_dec, opt_disc],
763
+ )
764
+
765
+ def get_networks(self):
766
+ (
767
+ critic,
768
+ gen,
769
+ enc,
770
+ dec_techno,
771
+ enc2,
772
+ dec2_techno,
773
+ critic_rec,
774
+ gen_ema_techno,
775
+ [opt_dec, opt_disc],
776
+ ) = self.load(self.args.load_path_techno, load_dec=False)
777
+ print(f"Techno networks loaded from {self.args.load_path_techno}")
778
+
779
+ (
780
+ critic,
781
+ gen,
782
+ enc,
783
+ dec_classical,
784
+ enc2,
785
+ dec2_classical,
786
+ critic_rec,
787
+ gen_ema_classical,
788
+ [opt_dec, opt_disc],
789
+ ) = self.load(self.args.load_path_classical, load_dec=False)
790
+ print(f"Classical networks loaded from {self.args.load_path_classical}")
791
+
792
+ return [critic, gen, enc, dec_techno, enc2, dec2_techno, critic_rec, gen_ema_techno, [opt_dec, opt_disc]], [
793
+ critic,
794
+ gen,
795
+ enc,
796
+ dec_classical,
797
+ enc2,
798
+ dec2_classical,
799
+ critic_rec,
800
+ gen_ema_classical,
801
+ [opt_dec, opt_disc],
802
+ ]
803
+
804
+ def initialize_networks(self):
805
+
806
+ [critic, gen, enc, dec_techno, enc2, dec2_techno, critic_rec, gen_ema_techno, [opt_dec, opt_disc]], [
807
+ critic,
808
+ gen,
809
+ enc,
810
+ dec_classical,
811
+ enc2,
812
+ dec2_classical,
813
+ critic_rec,
814
+ gen_ema_classical,
815
+ [opt_dec, opt_disc],
816
+ ] = self.get_networks()
817
+
818
+ print(f"Generator params: {count_params(gen_ema_techno.trainable_variables)}")
819
+ print(f"Decoder params: {count_params(dec_techno.trainable_variables+dec2_techno.trainable_variables)}")
820
+
821
+ return [critic, gen, enc, dec_techno, enc2, dec2_techno, critic_rec, gen_ema_techno, [opt_dec, opt_disc]], [
822
+ critic,
823
+ gen,
824
+ enc,
825
+ dec_classical,
826
+ enc2,
827
+ dec2_classical,
828
+ critic_rec,
829
+ gen_ema_classical,
830
+ [opt_dec, opt_disc],
831
+ ]
musika.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from parse_test import parse_args
2
+ from models import Models_functions
3
+ from utils import Utils_functions
4
+ import os
5
+
6
+ if __name__ == "__main__":
7
+
8
+ # parse args
9
+ args = parse_args()
10
+
11
+ # initialize networks
12
+ M = Models_functions(args)
13
+ models_ls_techno, models_ls_classical = M.get_networks()
14
+
15
+ # test musika
16
+ U = Utils_functions(args)
17
+ U.render_gradio(models_ls_techno, models_ls_classical, train=False)
parse_test.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from typing import Any
3
+ import tensorflow as tf
4
+
5
+
6
+ class EasyDict(dict):
7
+ def __getattr__(self, name: str) -> Any:
8
+ try:
9
+ return self[name]
10
+ except KeyError:
11
+ raise AttributeError(name)
12
+
13
+ def __setattr__(self, name: str, value: Any) -> None:
14
+ self[name] = value
15
+
16
+ def __delattr__(self, name: str) -> None:
17
+ del self[name]
18
+
19
+
20
+ def params_args(args):
21
+ parser = argparse.ArgumentParser()
22
+
23
+ parser.add_argument(
24
+ "--hop",
25
+ type=int,
26
+ default=256,
27
+ help="Hop size (window size = 4*hop)",
28
+ )
29
+ parser.add_argument(
30
+ "--mel_bins",
31
+ type=int,
32
+ default=256,
33
+ help="Mel bins in mel-spectrograms",
34
+ )
35
+ parser.add_argument(
36
+ "--sr",
37
+ type=int,
38
+ default=22050,
39
+ help="Sampling Rate",
40
+ )
41
+ parser.add_argument(
42
+ "--latlen",
43
+ type=int,
44
+ default=256,
45
+ help="Length of generated latent vectors",
46
+ )
47
+ parser.add_argument(
48
+ "--latdepth",
49
+ type=int,
50
+ default=64,
51
+ help="Depth of generated latent vectors",
52
+ )
53
+ parser.add_argument(
54
+ "--shape",
55
+ type=int,
56
+ default=128,
57
+ help="Length of spectrograms time axis",
58
+ )
59
+ parser.add_argument(
60
+ "--window",
61
+ type=int,
62
+ default=64,
63
+ help="Generator spectrogram window (must divide shape)",
64
+ )
65
+ parser.add_argument(
66
+ "--mu_rescale",
67
+ type=int,
68
+ default=-25.0,
69
+ help="Spectrogram mu used to normalize",
70
+ )
71
+ parser.add_argument(
72
+ "--sigma_rescale",
73
+ type=int,
74
+ default=75.0,
75
+ help="Spectrogram sigma used to normalize",
76
+ )
77
+ parser.add_argument(
78
+ "--load_path_techno",
79
+ type=str,
80
+ default="checkpoints/techno/",
81
+ help="Path of pretrained networks weights (techno)",
82
+ )
83
+ parser.add_argument(
84
+ "--load_path_classical",
85
+ type=str,
86
+ default="checkpoints/classical/",
87
+ help="Path of pretrained networks weights (classical)",
88
+ )
89
+ parser.add_argument(
90
+ "--dec_path_techno",
91
+ type=str,
92
+ default="checkpoints/techno/",
93
+ help="Path of pretrained decoders weights (techno)",
94
+ )
95
+ parser.add_argument(
96
+ "--dec_path_classical",
97
+ type=str,
98
+ default="checkpoints/classical/",
99
+ help="Path of pretrained decoders weights (classical)",
100
+ )
101
+ parser.add_argument(
102
+ "--testing",
103
+ type=bool,
104
+ default=True,
105
+ help="True if optimizers weight do not need to be loaded",
106
+ )
107
+ parser.add_argument(
108
+ "--cpu",
109
+ type=bool,
110
+ default=False,
111
+ help="True if you wish to use cpu",
112
+ )
113
+ parser.add_argument(
114
+ "--mixed_precision",
115
+ type=bool,
116
+ default=True,
117
+ help="True if your GPU supports mixed precision",
118
+ )
119
+
120
+ tmp_args = parser.parse_args()
121
+
122
+ args.hop = tmp_args.hop
123
+ args.mel_bins = tmp_args.mel_bins
124
+ args.sr = tmp_args.sr
125
+ args.latlen = tmp_args.latlen
126
+ args.latdepth = tmp_args.latdepth
127
+ args.shape = tmp_args.shape
128
+ args.window = tmp_args.window
129
+ args.mu_rescale = tmp_args.mu_rescale
130
+ args.sigma_rescale = tmp_args.sigma_rescale
131
+ args.load_path_techno = tmp_args.load_path_techno
132
+ args.load_path_classical = tmp_args.load_path_classical
133
+ args.dec_path_techno = tmp_args.dec_path_techno
134
+ args.dec_path_classical = tmp_args.dec_path_classical
135
+ args.testing = tmp_args.testing
136
+ args.cpu = tmp_args.cpu
137
+ args.mixed_precision = tmp_args.mixed_precision
138
+
139
+ print()
140
+
141
+ args.datatype = tf.float32
142
+ gpuls = tf.config.list_physical_devices("GPU")
143
+ if len(gpuls) == 0 or args.cpu:
144
+ args.cpu = True
145
+ args.mixed_precision = False
146
+ tf.config.set_visible_devices([], "GPU")
147
+ print()
148
+ print("Using CPU...")
149
+ print()
150
+ if args.mixed_precision:
151
+ args.datatype = tf.float16
152
+ print()
153
+ print("Using GPU with mixed precision enabled...")
154
+ print()
155
+ if not args.mixed_precision and not args.cpu:
156
+ print()
157
+ print("Using GPU without mixed precision...")
158
+ print()
159
+
160
+ return args
161
+
162
+
163
+ def parse_args():
164
+ args = EasyDict()
165
+ return params_args(args)
requirements.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file may be used to create an environment using:
2
+ # $ conda create --name <env> --file <this file>
3
+ # platform: linux-64
4
+ audioread==2.1.9
5
+ gradio==2.5.2
6
+ ipython==7.29.0
7
+ librosa==0.8.1
8
+ matplotlib==3.4.3
9
+ numpy==1.20.3
10
+ pillow==8.4.0
11
+ protobuf==3.20.1rc1
12
+ scikit-learn==1.0.1
13
+ scipy==1.7.1
14
+ seaborn==0.11.2
15
+ soundfile==0.10.3.post1
16
+ tensorboard==2.7.0
17
+ tensorflow==2.7.0
18
+ tensorflow-addons==0.15.0
19
+ tensorflow-io==0.22.0
20
+ tqdm==4.62.3
utils.py ADDED
@@ -0,0 +1,560 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+ import random
4
+ import time
5
+ from glob import glob
6
+
7
+ import IPython
8
+ import librosa
9
+ import matplotlib.pyplot as plt
10
+ import numpy as np
11
+ import soundfile as sf
12
+ import tensorflow as tf
13
+ import tensorflow_io as tfio
14
+
15
+ from tensorflow.keras import mixed_precision
16
+ from tensorflow.keras.optimizers import Adam
17
+ from tensorflow.python.framework import random_seed
18
+ from tqdm import tqdm
19
+ import gradio as gr
20
+ from scipy.io.wavfile import write as write_wav
21
+
22
+
23
+ class Utils_functions:
24
+ def __init__(self, args):
25
+
26
+ self.args = args
27
+
28
+ melmat = tf.signal.linear_to_mel_weight_matrix(
29
+ num_mel_bins=args.mel_bins,
30
+ num_spectrogram_bins=(4 * args.hop) // 2 + 1,
31
+ sample_rate=args.sr,
32
+ lower_edge_hertz=0.0,
33
+ upper_edge_hertz=args.sr // 2,
34
+ )
35
+ mel_f = tf.convert_to_tensor(librosa.mel_frequencies(n_mels=args.mel_bins + 2, fmin=0.0, fmax=args.sr // 2))
36
+ enorm = tf.cast(
37
+ tf.expand_dims(
38
+ tf.constant(2.0 / (mel_f[2 : args.mel_bins + 2] - mel_f[: args.mel_bins])),
39
+ 0,
40
+ ),
41
+ tf.float32,
42
+ )
43
+ melmat = tf.multiply(melmat, enorm)
44
+ melmat = tf.divide(melmat, tf.reduce_sum(melmat, axis=0))
45
+ self.melmat = tf.where(tf.math.is_nan(melmat), tf.zeros_like(melmat), melmat)
46
+
47
+ with np.errstate(divide="ignore", invalid="ignore"):
48
+ self.melmatinv = tf.constant(np.nan_to_num(np.divide(melmat.numpy().T, np.sum(melmat.numpy(), axis=1))).T)
49
+
50
+ def conc_tog_specphase(self, S, P):
51
+ S = tf.cast(S, tf.float32)
52
+ P = tf.cast(P, tf.float32)
53
+ S = self.denormalize(S, clip=False)
54
+ S = tf.math.sqrt(self.db2power(S) + 1e-7)
55
+ P = P * np.pi
56
+ Sls = tf.split(S, S.shape[0], 0)
57
+ S = tf.squeeze(tf.concat(Sls, 1), 0)
58
+ Pls = tf.split(P, P.shape[0], 0)
59
+ P = tf.squeeze(tf.concat(Pls, 1), 0)
60
+ SP = tf.cast(S, tf.complex64) * tf.math.exp(1j * tf.cast(P, tf.complex64))
61
+ wv = tf.signal.inverse_stft(
62
+ SP,
63
+ 4 * self.args.hop,
64
+ self.args.hop,
65
+ fft_length=4 * self.args.hop,
66
+ window_fn=tf.signal.inverse_stft_window_fn(self.args.hop),
67
+ )
68
+ return np.squeeze(wv)
69
+
70
+ def _tf_log10(self, x):
71
+ numerator = tf.math.log(x)
72
+ denominator = tf.math.log(tf.constant(10, dtype=numerator.dtype))
73
+ return numerator / denominator
74
+
75
+ def normalize(self, S, clip=False):
76
+ S = (S - self.args.mu_rescale) / self.args.sigma_rescale
77
+ if clip:
78
+ S = tf.clip_by_value(S, -1.0, 1.0)
79
+ return S
80
+
81
+ def normalize_rel(self, S):
82
+ S = S - tf.math.reduce_min(S + 1e-7)
83
+ S = (S / (tf.math.reduce_max(S + 1e-7) + 1e-7)) + 1e-7
84
+ return S
85
+
86
+ def denormalize(self, S, clip=False):
87
+ if clip:
88
+ S = tf.clip_by_value(S, -1.0, 1.0)
89
+ return (S * self.args.sigma_rescale) + self.args.mu_rescale
90
+
91
+ def amp2db(self, x):
92
+ return 20 * self._tf_log10(tf.clip_by_value(tf.abs(x), 1e-5, 1e100))
93
+
94
+ def db2amp(self, x):
95
+ return tf.pow(tf.ones(tf.shape(x)) * 10.0, x * 0.05)
96
+
97
+ def power2db(self, power, ref_value=1.0, amin=1e-10, top_db=None, norm=False):
98
+ log_spec = 10.0 * self._tf_log10(tf.maximum(amin, power))
99
+ log_spec -= 10.0 * self._tf_log10(tf.maximum(amin, ref_value))
100
+ if top_db is not None:
101
+ log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec) - top_db)
102
+ return log_spec
103
+
104
+ def power2db_batch(self, power, ref_value=1.0, amin=1e-10, top_db=None, norm=False):
105
+ log_spec = 10.0 * self._tf_log10(tf.maximum(amin, power))
106
+ log_spec -= 10.0 * self._tf_log10(tf.maximum(amin, ref_value))
107
+ if top_db is not None:
108
+ log_spec = tf.maximum(log_spec, tf.reduce_max(log_spec, [-2, -1], keepdims=True) - top_db)
109
+ return log_spec
110
+
111
+ def db2power(self, S_db, ref=1.0):
112
+ return ref * tf.math.pow(10.0, 0.1 * S_db)
113
+
114
+ def wv2mel(self, wv, topdb=80.0):
115
+ X = tf.signal.stft(
116
+ wv,
117
+ frame_length=4 * self.args.hop,
118
+ frame_step=self.args.hop,
119
+ fft_length=4 * self.args.hop,
120
+ window_fn=tf.signal.hann_window,
121
+ pad_end=False,
122
+ )
123
+ S = self.normalize(self.power2db(tf.abs(X) ** 2, top_db=topdb) - self.args.ref_level_db)
124
+ SM = tf.tensordot(S, self.melmat, 1)
125
+ return SM
126
+
127
+ def mel2spec(self, SM):
128
+ return tf.tensordot(SM, tf.transpose(self.melmatinv), 1)
129
+
130
+ def spec2mel(self, S):
131
+ return tf.tensordot(S, self.melmat, 1)
132
+
133
+ def wv2spec(self, wv, hop_size=256, fac=4):
134
+ X = tf.signal.stft(
135
+ wv,
136
+ frame_length=fac * hop_size,
137
+ frame_step=hop_size,
138
+ fft_length=fac * hop_size,
139
+ window_fn=tf.signal.hann_window,
140
+ pad_end=False,
141
+ )
142
+ return self.normalize(self.power2db(tf.abs(X) ** 2, top_db=None))
143
+
144
+ def wv2spec_hop(self, wv, topdb=80.0, hopsize=256):
145
+ X = tf.signal.stft(
146
+ wv,
147
+ frame_length=4 * hopsize,
148
+ frame_step=hopsize,
149
+ fft_length=4 * hopsize,
150
+ window_fn=tf.signal.hann_window,
151
+ pad_end=False,
152
+ )
153
+ S = self.normalize(self.power2db(tf.abs(X) ** 2, top_db=topdb))
154
+ return tf.tensordot(S, self.melmat, 1)
155
+
156
+ def distribute(self, x, model, bs=64, dual_out=False):
157
+ outls = []
158
+ if isinstance(x, list):
159
+ bdim = x[0].shape[0]
160
+ for i in range(((bdim - 2) // bs) + 1):
161
+ outls.append(model([el[i * bs : i * bs + bs] for el in x], training=False))
162
+ else:
163
+ bdim = x.shape[0]
164
+ for i in range(((bdim - 2) // bs) + 1):
165
+ outls.append(model(x[i * bs : i * bs + bs], training=False))
166
+
167
+ if dual_out:
168
+ return np.concatenate([outls[k][0] for k in range(len(outls))], 0), np.concatenate(
169
+ [outls[k][1] for k in range(len(outls))], 0
170
+ )
171
+ else:
172
+ return np.concatenate(outls, 0)
173
+
174
+ def distribute_enc(self, x, model, bs=64):
175
+ outls = []
176
+ if isinstance(x, list):
177
+ bdim = x[0].shape[0]
178
+ for i in range(((bdim - 2) // bs) + 1):
179
+ res = model([el[i * bs : i * bs + bs] for el in x], training=False)
180
+ resls = tf.split(res, self.args.shape // self.args.window, 0)
181
+ res = tf.concat(resls, -2)
182
+ outls.append(res)
183
+ else:
184
+ bdim = x.shape[0]
185
+ for i in range(((bdim - 2) // bs) + 1):
186
+ res = model(x[i * bs : i * bs + bs], training=False)
187
+ resls = tf.split(res, self.args.shape // self.args.window, 0)
188
+ res = tf.concat(resls, -2)
189
+ outls.append(res)
190
+
191
+ return np.concatenate(outls, 0)
192
+
193
+ def distribute_dec(self, x, model, bs=64):
194
+ outls = []
195
+ bdim = x.shape[0]
196
+ for i in range(((bdim - 2) // bs) + 1):
197
+ inp = x[i * bs : i * bs + bs]
198
+ inpls = tf.split(inp, 2, -2)
199
+ inp = tf.concat(inpls, 0)
200
+ res = model(inp, training=False)
201
+ outls.append(res)
202
+ return np.concatenate([outls[k][0] for k in range(len(outls))], 0), np.concatenate(
203
+ [outls[k][1] for k in range(len(outls))], 0
204
+ )
205
+
206
+ def distribute_dec2(self, x, model, bs=64):
207
+ outls = []
208
+ bdim = x.shape[0]
209
+ for i in range(((bdim - 2) // bs) + 1):
210
+ inp1 = x[i * bs : i * bs + bs]
211
+ inpls = tf.split(inp1, 2, -2)
212
+ inp1 = tf.concat(inpls, 0)
213
+ outls.append(model(inp1, training=False))
214
+
215
+ return np.concatenate(outls, 0)
216
+
217
+ def get_noise_interp(self):
218
+ noiseg = tf.random.normal([1, 64], dtype=tf.float32)
219
+
220
+ noisel = tf.concat([tf.random.normal([1, 64], dtype=tf.float32), noiseg], -1)
221
+ noisec = tf.concat([tf.random.normal([1, 64], dtype=tf.float32), noiseg], -1)
222
+ noiser = tf.concat([tf.random.normal([1, 64], dtype=tf.float32), noiseg], -1)
223
+
224
+ rl = tf.linspace(noisel, noisec, self.args.latlen + 1, axis=-2)[:, :-1, :]
225
+ rr = tf.linspace(noisec, noiser, self.args.latlen + 1, axis=-2)
226
+
227
+ noisetot = tf.concat([rl, rr], -2)
228
+ return tf.image.random_crop(noisetot, [1, self.args.latlen, 64 + 64])
229
+
230
+ def generate_example_stereo(self, models_ls):
231
+ (
232
+ critic,
233
+ gen,
234
+ enc,
235
+ dec,
236
+ enc2,
237
+ dec2,
238
+ critic_rec,
239
+ gen_ema,
240
+ [opt_dec, opt_disc],
241
+ ) = models_ls
242
+ abb = gen_ema(self.get_noise_interp(), training=False)
243
+ abbls = tf.split(abb, abb.shape[-2] // 16, -2)
244
+ abb = tf.concat(abbls, 0)
245
+
246
+ chls = []
247
+ for channel in range(2):
248
+
249
+ ab = self.distribute_dec2(
250
+ abb[
251
+ :,
252
+ :,
253
+ :,
254
+ channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth,
255
+ ],
256
+ dec2,
257
+ )
258
+ abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
259
+ ab = tf.concat(abls, 0)
260
+ ab_m, ab_p = self.distribute_dec(ab, dec)
261
+ wv = self.conc_tog_specphase(ab_m, ab_p)
262
+ chls.append(wv)
263
+
264
+ return np.stack(chls, -1)
265
+
266
+ # Save in training loop
267
+ def save_test_image_full(self, path, models_ls=None):
268
+
269
+ abwv = self.generate_example_stereo(models_ls)
270
+ abwv2 = self.generate_example_stereo(models_ls)
271
+ abwv3 = self.generate_example_stereo(models_ls)
272
+ abwv4 = self.generate_example_stereo(models_ls)
273
+
274
+ # IPython.display.display(
275
+ # IPython.display.Audio(np.squeeze(np.transpose(abwv)), rate=self.args.sr)
276
+ # )
277
+ # IPython.display.display(
278
+ # IPython.display.Audio(np.squeeze(np.transpose(abwv2)), rate=self.args.sr)
279
+ # )
280
+ # IPython.display.display(
281
+ # IPython.display.Audio(np.squeeze(np.transpose(abwv3)), rate=self.args.sr)
282
+ # )
283
+ # IPython.display.display(
284
+ # IPython.display.Audio(np.squeeze(np.transpose(abwv4)), rate=self.args.sr)
285
+ # )
286
+
287
+ write_wav(f"{path}/out1.wav", self.args.sr, np.squeeze(abwv))
288
+ write_wav(f"{path}/out2.wav", self.args.sr, np.squeeze(abwv2))
289
+ write_wav(f"{path}/out3.wav", self.args.sr, np.squeeze(abwv3))
290
+ write_wav(f"{path}/out4.wav", self.args.sr, np.squeeze(abwv4))
291
+
292
+ fig, axs = plt.subplots(nrows=4, ncols=1, figsize=(20, 20))
293
+ axs[0].imshow(
294
+ np.flip(
295
+ np.array(
296
+ tf.transpose(
297
+ self.wv2spec_hop((abwv[:, 0] + abwv[:, 1]) / 2.0, 80.0, 256),
298
+ [1, 0],
299
+ )
300
+ ),
301
+ -2,
302
+ ),
303
+ cmap=None,
304
+ )
305
+ axs[0].axis("off")
306
+ axs[0].set_title("Generated1")
307
+ axs[1].imshow(
308
+ np.flip(
309
+ np.array(
310
+ tf.transpose(
311
+ self.wv2spec_hop((abwv2[:, 0] + abwv2[:, 1]) / 2.0, 80.0, 256),
312
+ [1, 0],
313
+ )
314
+ ),
315
+ -2,
316
+ ),
317
+ cmap=None,
318
+ )
319
+ axs[1].axis("off")
320
+ axs[1].set_title("Generated2")
321
+ axs[2].imshow(
322
+ np.flip(
323
+ np.array(
324
+ tf.transpose(
325
+ self.wv2spec_hop((abwv3[:, 0] + abwv3[:, 1]) / 2.0, 80.0, 256),
326
+ [1, 0],
327
+ )
328
+ ),
329
+ -2,
330
+ ),
331
+ cmap=None,
332
+ )
333
+ axs[2].axis("off")
334
+ axs[2].set_title("Generated3")
335
+ axs[3].imshow(
336
+ np.flip(
337
+ np.array(
338
+ tf.transpose(
339
+ self.wv2spec_hop((abwv4[:, 0] + abwv4[:, 1]) / 2.0, 80.0, 256),
340
+ [1, 0],
341
+ )
342
+ ),
343
+ -2,
344
+ ),
345
+ cmap=None,
346
+ )
347
+ axs[3].axis("off")
348
+ axs[3].set_title("Generated4")
349
+ # plt.show()
350
+ plt.savefig(f"{path}/output.png")
351
+
352
+ # Save in training loop
353
+ def save_end(
354
+ self,
355
+ epoch,
356
+ gloss,
357
+ closs,
358
+ mloss,
359
+ models_ls=None,
360
+ n_save=3,
361
+ save_path="checkpoints",
362
+ ):
363
+ (
364
+ critic,
365
+ gen,
366
+ enc,
367
+ dec,
368
+ enc2,
369
+ dec2,
370
+ critic_rec,
371
+ gen_ema,
372
+ [opt_dec, opt_disc],
373
+ ) = models_ls
374
+ if epoch % n_save == 0:
375
+ print("Saving...")
376
+ path = f"{save_path}/MUSIKA!_-{str(gloss)[:9]}-{str(closs)[:9]}-{str(mloss)[:9]}"
377
+ os.mkdir(path)
378
+ critic.save_weights(path + "/critic.h5")
379
+ critic_rec.save_weights(path + "/critic_rec.h5")
380
+ gen.save_weights(path + "/gen.h5")
381
+ gen_ema.save_weights(path + "/gen_ema.h5")
382
+ # enc.save_weights(path + "/enc.h5")
383
+ # dec.save_weights(path + "/dec.h5")
384
+ # enc2.save_weights(path + "/enc2.h5")
385
+ # dec2.save_weights(path + "/dec2.h5")
386
+ np.save(path + "/opt_dec.npy", opt_dec.get_weights())
387
+ np.save(path + "/opt_disc.npy", opt_disc.get_weights())
388
+ self.save_test_image_full(path, models_ls=models_ls)
389
+
390
+ def truncated_normal(self, shape, bound=2.0, dtype=tf.float32):
391
+ seed1, seed2 = random_seed.get_seed(tf.random.uniform((), tf.int32.min, tf.int32.max, dtype=tf.int32))
392
+ return tf.random.stateless_parameterized_truncated_normal(shape, [seed1, seed2], 0.0, 1.0, -bound, bound)
393
+
394
+ def distribute_gen(self, x, model, bs=64):
395
+ outls = []
396
+ bdim = x.shape[0]
397
+ if bdim == 1:
398
+ bdim = 2
399
+ for i in range(((bdim - 2) // bs) + 1):
400
+ outls.append(model(x[i * bs : i * bs + bs], training=False))
401
+ return np.concatenate(outls, 0)
402
+
403
+ def get_noise_interp_multi(self, fac=1, var=2.0):
404
+ noiseg = self.truncated_normal([1, 64], var, dtype=tf.float32)
405
+
406
+ if var < 1.75:
407
+ var = 1.75
408
+
409
+ noisels = [
410
+ tf.concat([self.truncated_normal([1, 64], var, dtype=tf.float32), noiseg], -1) for i in range(2 + (fac - 1))
411
+ ]
412
+ rls = [
413
+ tf.linspace(noisels[k], noisels[k + 1], self.args.latlen + 1, axis=-2)[:, :-1, :]
414
+ for k in range(len(noisels) - 1)
415
+ ]
416
+ return tf.concat(rls, 0)
417
+
418
+ def stfunc(self, genre, z, var, models_ls_techno, models_ls_classical):
419
+
420
+ (
421
+ critic,
422
+ gen,
423
+ enc,
424
+ dec_techno,
425
+ enc2,
426
+ dec2_techno,
427
+ critic_rec,
428
+ gen_ema_techno,
429
+ [opt_dec, opt_disc],
430
+ ) = models_ls_techno
431
+ (
432
+ critic,
433
+ gen,
434
+ enc,
435
+ dec_classical,
436
+ enc2,
437
+ dec2_classical,
438
+ critic_rec,
439
+ gen_ema_classical,
440
+ [opt_dec, opt_disc],
441
+ ) = models_ls_classical
442
+
443
+ var = 0.01 + (3.5 * (var / 100.0))
444
+
445
+ if z == 0:
446
+ fac = 1
447
+ elif z == 1:
448
+ fac = 5
449
+ else:
450
+ fac = 10
451
+
452
+ if genre == 0:
453
+ dec = dec_techno
454
+ dec2 = dec2_techno
455
+ gen_ema = gen_ema_techno
456
+ else:
457
+ dec = dec_classical
458
+ dec2 = dec2_classical
459
+ gen_ema = gen_ema_classical
460
+
461
+ bef = time.time()
462
+ ab = self.distribute_gen(self.get_noise_interp_multi(fac, var), gen_ema)
463
+ abls = tf.split(ab, ab.shape[0], 0)
464
+ ab = tf.concat(abls, -2)
465
+ abls = tf.split(ab, ab.shape[-2] // 16, -2)
466
+ abi = tf.concat(abls, 0)
467
+
468
+ chls = []
469
+ for channel in range(2):
470
+
471
+ ab = self.distribute_dec2(
472
+ abi[:, :, :, channel * self.args.latdepth : channel * self.args.latdepth + self.args.latdepth],
473
+ dec2,
474
+ bs=128,
475
+ )
476
+ # abls = tf.split(ab, ab.shape[-2] // (self.args.shape // 2), -2)
477
+ abls = tf.split(ab, ab.shape[-2] // self.args.shape, -2)
478
+ ab = tf.concat(abls, 0)
479
+
480
+ ab_m, ab_p = self.distribute_dec(ab, dec, bs=128)
481
+ abwv = self.conc_tog_specphase(ab_m, ab_p)
482
+ chls.append(abwv)
483
+
484
+ print(
485
+ f"Time for complete generation pipeline: {time.time()-bef} s {int(np.round((fac*23.)/(time.time()-bef)))}x faster than Real Time!"
486
+ )
487
+
488
+ abwvc = np.clip(np.squeeze(np.stack(chls, -1)), -1.0, 1.0)
489
+ spec = np.flip(
490
+ np.array(
491
+ tf.transpose(
492
+ self.wv2spec_hop((abwvc[: 23 * self.args.sr, 0] + abwvc[: 23 * self.args.sr, 1]) / 2.0, 80.0, 256),
493
+ [1, 0],
494
+ )
495
+ ),
496
+ -2,
497
+ )
498
+
499
+ return (
500
+ spec,
501
+ (self.args.sr, np.int16(abwvc * 32767.0)),
502
+ )
503
+
504
+ def render_gradio(self, models_ls_techno, models_ls_classical, train=True):
505
+ article_text = "Original work by Marco Pasini ([Twitter](https://twitter.com/marco_ppasini)) at Johannes Kepler Universität Linz. Supervised by Jan Schlüter."
506
+
507
+ def gradio_func(x, y, z):
508
+ return self.stfunc(x, y, z, models_ls_techno, models_ls_classical)
509
+
510
+ iface = gr.Interface(
511
+ fn=gradio_func,
512
+ inputs=[
513
+ gr.inputs.Radio(
514
+ choices=["Techno", "Classical"],
515
+ type="index",
516
+ default="Techno",
517
+ label="Music Genre to Generate (Brace yourself for very high levels of weirdness!)",
518
+ ),
519
+ gr.inputs.Radio(
520
+ choices=["23 s", "115 s", "230 s"],
521
+ type="index",
522
+ default="115 s",
523
+ label="Generated Music Length",
524
+ ),
525
+ gr.inputs.Slider(
526
+ minimum=0,
527
+ maximum=100,
528
+ step=1,
529
+ default=50,
530
+ label="Stability[left]/Variety[right] Tradeoff (Truncation Trick)",
531
+ ),
532
+ ],
533
+ outputs=[
534
+ gr.outputs.Image(label="Log-MelSpectrogram of Generated Audio (first 23 sec)"),
535
+ gr.outputs.Audio(type="numpy", label="Generated Audio"),
536
+ ],
537
+ allow_screenshot=False,
538
+ title="musika!",
539
+ description="Blazingly Fast Stereo Waveform Music Generation of Arbitrary Length",
540
+ article=article_text,
541
+ layout="vertical",
542
+ theme="huggingface",
543
+ )
544
+
545
+ print("--------------------------------")
546
+ print("--------------------------------")
547
+ print("--------------------------------")
548
+ print("--------------------------------")
549
+ print("--------------------------------")
550
+ print("CLICK ON LINK BELOW TO OPEN GRADIO INTERFACE")
551
+ if train:
552
+ iface.launch(prevent_thread_lock=True)
553
+ else:
554
+ iface.launch()
555
+ # iface.launch(share=True, enable_queue=True)
556
+ print("--------------------------------")
557
+ print("--------------------------------")
558
+ print("--------------------------------")
559
+ print("--------------------------------")
560
+ print("--------------------------------")