import gradio as gr import datetime from transformers import pipeline classifier = pipeline("zero-shot-classification", model="NbAiLab/nb-bert-base-mnli") def sequence_to_classify(sequence, labels): hypothesis_template = 'Dette eksempelet er {}.' label_clean = str(labels).split(",") response = classifier(sequence, label_clean, hypothesis_template=hypothesis_template, multi_class=True) predicted_labels = response['labels'] predicted_scores = response['scores'] clean_output = {idx: float(predicted_scores.pop(0)) for idx in predicted_labels} print("Date:{} , Sequece:{}, Labels: {}".format( str(datetime.datetime.now()), sequence, predicted_labels) ) return clean_output example_text1="Folkehelseinstituttets mest optimistiske anslag er at alle voksne er ferdigvaksinert innen midten av september." example_labels1="politikk,helse,sport,religion" example_text2="Kutt smør i terninger, og la det temperere seg litt mens deigen elter. Ha hvetemel, sukker, gjær, salt og kardemomme i en bakebolle til kjøkkenmaskin. Bruker du fersk gjær kan du smuldre gjæren i bollen, eller røre den ut i melken. Alt vil ettehvert blande seg godt, så begge deler er like bra." example_labels2="helse,sport,religion, mat" iface = gr.Interface( title = "Zero-shot Classification of Norwegian Text", description = "Demo of zero-shot classification using NB-Bert base model (Norwegian).", fn=sequence_to_classify, inputs=[gr.inputs.Textbox(lines=2, label="Write a norwegian text you would like to classify...", placeholder="Text here..."), gr.inputs.Textbox(lines=10, label="Possible candidate labels", placeholder="labels here...")], outputs=gr.outputs.Label(num_top_classes=3), capture_session=True, interpretation="default" ,examples=[ [example_text1, example_labels1], [example_text2, example_labels2] ]) iface.launch()