gliner_multi / GLiNER /modules /token_rep.py
Tom Aarsen
Add cloned GLiNER repository
914502f
from typing import List
import torch
from flair.data import Sentence
from flair.embeddings import TransformerWordEmbeddings
from torch import nn
from torch.nn.utils.rnn import pad_sequence
# flair.cache_root = '/gpfswork/rech/pds/upa43yu/.cache'
class TokenRepLayer(nn.Module):
def __init__(self, model_name: str = "bert-base-cased", fine_tune: bool = True, subtoken_pooling: str = "first",
hidden_size: int = 768,
add_tokens=["[SEP]", "[ENT]"]
):
super().__init__()
self.bert_layer = TransformerWordEmbeddings(
model_name,
fine_tune=fine_tune,
subtoken_pooling=subtoken_pooling,
allow_long_sentences=True
)
# add tokens to vocabulary
self.bert_layer.tokenizer.add_tokens(add_tokens)
# resize token embeddings
self.bert_layer.model.resize_token_embeddings(len(self.bert_layer.tokenizer))
bert_hidden_size = self.bert_layer.embedding_length
if hidden_size != bert_hidden_size:
self.projection = nn.Linear(bert_hidden_size, hidden_size)
def forward(self, tokens: List[List[str]], lengths: torch.Tensor):
token_embeddings = self.compute_word_embedding(tokens)
if hasattr(self, "projection"):
token_embeddings = self.projection(token_embeddings)
B = len(lengths)
max_length = lengths.max()
mask = (torch.arange(max_length).view(1, -1).repeat(B, 1) < lengths.cpu().unsqueeze(1)).to(
token_embeddings.device).long()
return {"embeddings": token_embeddings, "mask": mask}
def compute_word_embedding(self, tokens):
sentences = [Sentence(i) for i in tokens]
self.bert_layer.embed(sentences)
token_embeddings = pad_sequence([torch.stack([t.embedding for t in k]) for k in sentences], batch_first=True)
return token_embeddings