File size: 8,885 Bytes
914502f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import torch
import torch.nn.functional as F
from torch import nn


class SpanQuery(nn.Module):

    def __init__(self, hidden_size, max_width, trainable=True):
        super().__init__()

        self.query_seg = nn.Parameter(torch.randn(hidden_size, max_width))

        nn.init.uniform_(self.query_seg, a=-1, b=1)

        if not trainable:
            self.query_seg.requires_grad = False

        self.project = nn.Sequential(
            nn.Linear(hidden_size, hidden_size),
            nn.ReLU()
        )

    def forward(self, h, *args):
        # h of shape [B, L, D]
        # query_seg of shape [D, max_width]

        span_rep = torch.einsum('bld, ds->blsd', h, self.query_seg)

        return self.project(span_rep)


class SpanMLP(nn.Module):

    def __init__(self, hidden_size, max_width):
        super().__init__()

        self.mlp = nn.Linear(hidden_size, hidden_size * max_width)

    def forward(self, h, *args):
        # h of shape [B, L, D]
        # query_seg of shape [D, max_width]

        B, L, D = h.size()

        span_rep = self.mlp(h)

        span_rep = span_rep.view(B, L, -1, D)

        return span_rep.relu()


class SpanCAT(nn.Module):

    def __init__(self, hidden_size, max_width):
        super().__init__()

        self.max_width = max_width

        self.query_seg = nn.Parameter(torch.randn(128, max_width))

        self.project = nn.Sequential(
            nn.Linear(hidden_size + 128, hidden_size),
            nn.ReLU()
        )

    def forward(self, h, *args):
        # h of shape [B, L, D]
        # query_seg of shape [D, max_width]

        B, L, D = h.size()

        h = h.view(B, L, 1, D).repeat(1, 1, self.max_width, 1)

        q = self.query_seg.view(1, 1, self.max_width, -1).repeat(B, L, 1, 1)

        span_rep = torch.cat([h, q], dim=-1)

        span_rep = self.project(span_rep)

        return span_rep


class SpanConvBlock(nn.Module):
    def __init__(self, hidden_size, kernel_size, span_mode='conv_normal'):
        super().__init__()

        if span_mode == 'conv_conv':
            self.conv = nn.Conv1d(hidden_size, hidden_size,
                                  kernel_size=kernel_size)

            # initialize the weights
            nn.init.kaiming_uniform_(self.conv.weight, nonlinearity='relu')

        elif span_mode == 'conv_max':
            self.conv = nn.MaxPool1d(kernel_size=kernel_size, stride=1)
        elif span_mode == 'conv_mean' or span_mode == 'conv_sum':
            self.conv = nn.AvgPool1d(kernel_size=kernel_size, stride=1)

        self.span_mode = span_mode

        self.pad = kernel_size - 1

    def forward(self, x):

        x = torch.einsum('bld->bdl', x)

        if self.pad > 0:
            x = F.pad(x, (0, self.pad), "constant", 0)

        x = self.conv(x)

        if self.span_mode == "conv_sum":
            x = x * (self.pad + 1)

        return torch.einsum('bdl->bld', x)


class SpanConv(nn.Module):
    def __init__(self, hidden_size, max_width, span_mode):
        super().__init__()

        kernels = [i + 2 for i in range(max_width - 1)]

        self.convs = nn.ModuleList()

        for kernel in kernels:
            self.convs.append(SpanConvBlock(hidden_size, kernel, span_mode))

        self.project = nn.Sequential(
            nn.ReLU(),
            nn.Linear(hidden_size, hidden_size)
        )

    def forward(self, x, *args):

        span_reps = [x]

        for conv in self.convs:
            h = conv(x)
            span_reps.append(h)

        span_reps = torch.stack(span_reps, dim=-2)

        return self.project(span_reps)


class SpanEndpointsBlock(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()

        self.kernel_size = kernel_size

    def forward(self, x):
        B, L, D = x.size()

        span_idx = torch.LongTensor(
            [[i, i + self.kernel_size - 1] for i in range(L)]).to(x.device)

        x = F.pad(x, (0, 0, 0, self.kernel_size - 1), "constant", 0)

        # endrep
        start_end_rep = torch.index_select(x, dim=1, index=span_idx.view(-1))

        start_end_rep = start_end_rep.view(B, L, 2, D)

        return start_end_rep


class ConvShare(nn.Module):
    def __init__(self, hidden_size, max_width):
        super().__init__()

        self.max_width = max_width

        self.conv_weigth = nn.Parameter(
            torch.randn(hidden_size, hidden_size, max_width))

        nn.init.kaiming_uniform_(self.conv_weigth, nonlinearity='relu')

        self.project = nn.Sequential(
            nn.ReLU(),
            nn.Linear(hidden_size, hidden_size)
        )

    def forward(self, x, *args):
        span_reps = []

        x = torch.einsum('bld->bdl', x)

        for i in range(self.max_width):
            pad = i
            x_i = F.pad(x, (0, pad), "constant", 0)
            conv_w = self.conv_weigth[:, :, :i + 1]
            out_i = F.conv1d(x_i, conv_w)
            span_reps.append(out_i.transpose(-1, -2))

        out = torch.stack(span_reps, dim=-2)

        return self.project(out)


def extract_elements(sequence, indices):
    B, L, D = sequence.shape
    K = indices.shape[1]

    # Expand indices to [B, K, D]
    expanded_indices = indices.unsqueeze(2).expand(-1, -1, D)

    # Gather the elements
    extracted_elements = torch.gather(sequence, 1, expanded_indices)

    return extracted_elements


class SpanMarker(nn.Module):

    def __init__(self, hidden_size, max_width, dropout=0.4):
        super().__init__()

        self.max_width = max_width

        self.project_start = nn.Sequential(
            nn.Linear(hidden_size, hidden_size * 2, bias=True),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_size * 2, hidden_size, bias=True),
        )

        self.project_end = nn.Sequential(
            nn.Linear(hidden_size, hidden_size * 2, bias=True),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_size * 2, hidden_size, bias=True),
        )

        self.out_project = nn.Linear(hidden_size * 2, hidden_size, bias=True)

    def forward(self, h, span_idx):
        # h of shape [B, L, D]
        # query_seg of shape [D, max_width]

        B, L, D = h.size()

        # project start and end
        start_rep = self.project_start(h)
        end_rep = self.project_end(h)

        start_span_rep = extract_elements(start_rep, span_idx[:, :, 0])
        end_span_rep = extract_elements(end_rep, span_idx[:, :, 1])

        # concat start and end
        cat = torch.cat([start_span_rep, end_span_rep], dim=-1).relu()

        # project
        cat = self.out_project(cat)

        # reshape
        return cat.view(B, L, self.max_width, D)


class ConvShareV2(nn.Module):
    def __init__(self, hidden_size, max_width):
        super().__init__()

        self.max_width = max_width

        self.conv_weigth = nn.Parameter(
            torch.randn(hidden_size, hidden_size, max_width)
        )

        nn.init.xavier_normal_(self.conv_weigth)

    def forward(self, x, *args):
        span_reps = []

        x = torch.einsum('bld->bdl', x)

        for i in range(self.max_width):
            pad = i
            x_i = F.pad(x, (0, pad), "constant", 0)
            conv_w = self.conv_weigth[:, :, :i + 1]
            out_i = F.conv1d(x_i, conv_w)
            span_reps.append(out_i.transpose(-1, -2))

        out = torch.stack(span_reps, dim=-2)

        return out


class SpanRepLayer(nn.Module):
    """
    Various span representation approaches
    """

    def __init__(self, hidden_size, max_width, span_mode, **kwargs):
        super().__init__()

        if span_mode == 'marker':
            self.span_rep_layer = SpanMarker(hidden_size, max_width, **kwargs)
        elif span_mode == 'query':
            self.span_rep_layer = SpanQuery(
                hidden_size, max_width, trainable=True)
        elif span_mode == 'mlp':
            self.span_rep_layer = SpanMLP(hidden_size, max_width)
        elif span_mode == 'cat':
            self.span_rep_layer = SpanCAT(hidden_size, max_width)
        elif span_mode == 'conv_conv':
            self.span_rep_layer = SpanConv(
                hidden_size, max_width, span_mode='conv_conv')
        elif span_mode == 'conv_max':
            self.span_rep_layer = SpanConv(
                hidden_size, max_width, span_mode='conv_max')
        elif span_mode == 'conv_mean':
            self.span_rep_layer = SpanConv(
                hidden_size, max_width, span_mode='conv_mean')
        elif span_mode == 'conv_sum':
            self.span_rep_layer = SpanConv(
                hidden_size, max_width, span_mode='conv_sum')
        elif span_mode == 'conv_share':
            self.span_rep_layer = ConvShare(hidden_size, max_width)
        else:
            raise ValueError(f'Unknown span mode {span_mode}')

    def forward(self, x, *args):

        return self.span_rep_layer(x, *args)