Spaces:
Sleeping
Sleeping
# app.py | |
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
def generate_kannada_text(prompt): | |
model_name = "Tensoic/Kan-LLaMA-7B-SFT-v0.1" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
output = model.generate( | |
input_ids, | |
max_length=150, | |
num_beams=5, | |
no_repeat_ngram_size=2, | |
top_k=50, | |
top_p=0.95, | |
length_penalty=0.8 | |
) | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text | |
def main(): | |
st.title("Kannada Text Generation App") | |
# User input prompt | |
prompt = st.text_area("Enter a prompt in Kannada:") | |
# Generate Kannada text | |
if st.button("Generate Text"): | |
generated_text = generate_kannada_text(prompt) | |
st.subheader("Generated Kannada Text:") | |
st.write(generated_text) | |
if __name__ == "__main__": | |
main() | |