|
import torch |
|
from collections import namedtuple, OrderedDict |
|
from safetensors import safe_open |
|
from .attention_processor import init_attn_proc |
|
from .ip_adapter import MultiIPAdapterImageProjection |
|
from .resampler import Resampler |
|
from transformers import ( |
|
AutoModel, AutoImageProcessor, |
|
CLIPVisionModelWithProjection, CLIPImageProcessor) |
|
|
|
|
|
def init_adapter_in_unet( |
|
unet, |
|
image_proj_model=None, |
|
pretrained_model_path_or_dict=None, |
|
adapter_tokens=64, |
|
embedding_dim=None, |
|
use_lcm=False, |
|
use_adaln=True, |
|
): |
|
device = unet.device |
|
dtype = unet.dtype |
|
if image_proj_model is None: |
|
assert embedding_dim is not None, "embedding_dim must be provided if image_proj_model is None." |
|
image_proj_model = Resampler( |
|
embedding_dim=embedding_dim, |
|
output_dim=unet.config.cross_attention_dim, |
|
num_queries=adapter_tokens, |
|
) |
|
if pretrained_model_path_or_dict is not None: |
|
if not isinstance(pretrained_model_path_or_dict, dict): |
|
if pretrained_model_path_or_dict.endswith(".safetensors"): |
|
state_dict = {"image_proj": {}, "ip_adapter": {}} |
|
with safe_open(pretrained_model_path_or_dict, framework="pt", device=unet.device) as f: |
|
for key in f.keys(): |
|
if key.startswith("image_proj."): |
|
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) |
|
elif key.startswith("ip_adapter."): |
|
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(pretrained_model_path_or_dict, map_location=unet.device) |
|
else: |
|
state_dict = pretrained_model_path_or_dict |
|
keys = list(state_dict.keys()) |
|
if "image_proj" not in keys and "ip_adapter" not in keys: |
|
state_dict = revise_state_dict(state_dict) |
|
|
|
|
|
attn_procs = init_attn_proc(unet, adapter_tokens, use_lcm, use_adaln) |
|
unet.set_attn_processor(attn_procs) |
|
|
|
|
|
if pretrained_model_path_or_dict is not None: |
|
if "ip_adapter" in state_dict.keys(): |
|
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) |
|
missing, unexpected = adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=False) |
|
for mk in missing: |
|
if "ln" not in mk: |
|
raise ValueError(f"Missing keys in adapter_modules: {missing}") |
|
if "image_proj" in state_dict.keys(): |
|
image_proj_model.load_state_dict(state_dict["image_proj"]) |
|
|
|
|
|
image_projection_layers = [] |
|
image_projection_layers.append(image_proj_model) |
|
unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) |
|
|
|
|
|
unet.config.encoder_hid_dim_type = "ip_image_proj" |
|
unet.to(dtype=dtype, device=device) |
|
|
|
|
|
def load_adapter_to_pipe( |
|
pipe, |
|
pretrained_model_path_or_dict, |
|
image_encoder_or_path=None, |
|
feature_extractor_or_path=None, |
|
use_clip_encoder=False, |
|
adapter_tokens=64, |
|
use_lcm=False, |
|
use_adaln=True, |
|
): |
|
|
|
if not isinstance(pretrained_model_path_or_dict, dict): |
|
if pretrained_model_path_or_dict.endswith(".safetensors"): |
|
state_dict = {"image_proj": {}, "ip_adapter": {}} |
|
with safe_open(pretrained_model_path_or_dict, framework="pt", device=pipe.device) as f: |
|
for key in f.keys(): |
|
if key.startswith("image_proj."): |
|
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) |
|
elif key.startswith("ip_adapter."): |
|
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(pretrained_model_path_or_dict, map_location=pipe.device) |
|
else: |
|
state_dict = pretrained_model_path_or_dict |
|
keys = list(state_dict.keys()) |
|
if "image_proj" not in keys and "ip_adapter" not in keys: |
|
state_dict = revise_state_dict(state_dict) |
|
|
|
|
|
if image_encoder_or_path is not None: |
|
if isinstance(image_encoder_or_path, str): |
|
feature_extractor_or_path = image_encoder_or_path if feature_extractor_or_path is None else feature_extractor_or_path |
|
|
|
image_encoder_or_path = ( |
|
CLIPVisionModelWithProjection.from_pretrained( |
|
image_encoder_or_path |
|
) if use_clip_encoder else |
|
AutoModel.from_pretrained(image_encoder_or_path) |
|
) |
|
|
|
if feature_extractor_or_path is not None: |
|
if isinstance(feature_extractor_or_path, str): |
|
feature_extractor_or_path = ( |
|
CLIPImageProcessor() if use_clip_encoder else |
|
AutoImageProcessor.from_pretrained(feature_extractor_or_path) |
|
) |
|
|
|
|
|
if hasattr(pipe, "image_encoder") and getattr(pipe, "image_encoder", None) is None: |
|
image_encoder = image_encoder_or_path.to(pipe.device, dtype=pipe.dtype) |
|
pipe.register_modules(image_encoder=image_encoder) |
|
else: |
|
image_encoder = pipe.image_encoder |
|
|
|
|
|
if hasattr(pipe, "feature_extractor") and getattr(pipe, "feature_extractor", None) is None: |
|
feature_extractor = feature_extractor_or_path |
|
pipe.register_modules(feature_extractor=feature_extractor) |
|
else: |
|
feature_extractor = pipe.feature_extractor |
|
|
|
|
|
unet = getattr(pipe, pipe.unet_name) if not hasattr(pipe, "unet") else pipe.unet |
|
attn_procs = init_attn_proc(unet, adapter_tokens, use_lcm, use_adaln) |
|
unet.set_attn_processor(attn_procs) |
|
image_proj_model = Resampler( |
|
embedding_dim=image_encoder.config.hidden_size, |
|
output_dim=unet.config.cross_attention_dim, |
|
num_queries=adapter_tokens, |
|
) |
|
|
|
|
|
if "ip_adapter" in state_dict.keys(): |
|
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) |
|
missing, unexpected = adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=False) |
|
for mk in missing: |
|
if "ln" not in mk: |
|
raise ValueError(f"Missing keys in adapter_modules: {missing}") |
|
if "image_proj" in state_dict.keys(): |
|
image_proj_model.load_state_dict(state_dict["image_proj"]) |
|
|
|
|
|
image_projection_layers = [] |
|
image_projection_layers.append(image_proj_model) |
|
unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) |
|
|
|
|
|
unet.config.encoder_hid_dim_type = "ip_image_proj" |
|
unet.to(dtype=pipe.dtype, device=pipe.device) |
|
|
|
|
|
def revise_state_dict(old_state_dict_or_path, map_location="cpu"): |
|
new_state_dict = OrderedDict() |
|
new_state_dict["image_proj"] = OrderedDict() |
|
new_state_dict["ip_adapter"] = OrderedDict() |
|
if isinstance(old_state_dict_or_path, str): |
|
old_state_dict = torch.load(old_state_dict_or_path, map_location=map_location) |
|
else: |
|
old_state_dict = old_state_dict_or_path |
|
for name, weight in old_state_dict.items(): |
|
if name.startswith("image_proj_model."): |
|
new_state_dict["image_proj"][name[len("image_proj_model."):]] = weight |
|
elif name.startswith("adapter_modules."): |
|
new_state_dict["ip_adapter"][name[len("adapter_modules."):]] = weight |
|
return new_state_dict |
|
|
|
|
|
|
|
def encode_image(image_encoder, feature_extractor, image, device, num_images_per_prompt, output_hidden_states=None): |
|
dtype = next(image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if output_hidden_states: |
|
image_enc_hidden_states = image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
return image_enc_hidden_states |
|
else: |
|
if isinstance(image_encoder, CLIPVisionModelWithProjection): |
|
|
|
image_embeds = image_encoder(image).image_embeds |
|
else: |
|
|
|
image_embeds = image_encoder(image).last_hidden_state |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
return image_embeds |
|
|
|
|
|
def prepare_training_image_embeds( |
|
image_encoder, feature_extractor, |
|
ip_adapter_image, ip_adapter_image_embeds, |
|
device, drop_rate, output_hidden_state, idx_to_replace=None |
|
): |
|
if ip_adapter_image_embeds is None: |
|
if not isinstance(ip_adapter_image, list): |
|
ip_adapter_image = [ip_adapter_image] |
|
|
|
|
|
|
|
|
|
|
|
|
|
image_embeds = [] |
|
for single_ip_adapter_image in ip_adapter_image: |
|
if idx_to_replace is None: |
|
idx_to_replace = torch.rand(len(single_ip_adapter_image)) < drop_rate |
|
zero_ip_adapter_image = torch.zeros_like(single_ip_adapter_image) |
|
single_ip_adapter_image[idx_to_replace] = zero_ip_adapter_image[idx_to_replace] |
|
single_image_embeds = encode_image( |
|
image_encoder, feature_extractor, single_ip_adapter_image, device, 1, output_hidden_state |
|
) |
|
single_image_embeds = torch.stack([single_image_embeds], dim=1) |
|
|
|
image_embeds.append(single_image_embeds) |
|
else: |
|
repeat_dims = [1] |
|
image_embeds = [] |
|
for single_image_embeds in ip_adapter_image_embeds: |
|
if do_classifier_free_guidance: |
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) |
|
single_image_embeds = single_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
) |
|
single_negative_image_embeds = single_negative_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) |
|
) |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
else: |
|
single_image_embeds = single_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
) |
|
image_embeds.append(single_image_embeds) |
|
|
|
return image_embeds |