|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.utils import deprecate, logging |
|
from diffusers.utils.torch_utils import maybe_allow_in_graph |
|
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU |
|
from diffusers.models.attention_processor import Attention |
|
from diffusers.models.embeddings import SinusoidalPositionalEmbedding |
|
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm |
|
|
|
from module.min_sdxl import LoRACompatibleLinear, LoRALinearLayer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
def maybe_grad_checkpoint(resnet, attn, hidden_states, temb, encoder_hidden_states, adapter_hidden_states, do_ckpt=True): |
|
|
|
if do_ckpt: |
|
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) |
|
hidden_states, extracted_kv = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(attn), hidden_states, encoder_hidden_states, adapter_hidden_states, use_reentrant=False |
|
) |
|
else: |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states, extracted_kv = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
adapter_hidden_states=adapter_hidden_states, |
|
) |
|
return hidden_states, extracted_kv |
|
|
|
|
|
def init_lora_in_attn(attn_module, rank: int = 4, is_kvcopy=False): |
|
|
|
|
|
attn_module.to_k.set_lora_layer( |
|
LoRALinearLayer( |
|
in_features=attn_module.to_k.in_features, out_features=attn_module.to_k.out_features, rank=rank |
|
) |
|
) |
|
attn_module.to_v.set_lora_layer( |
|
LoRALinearLayer( |
|
in_features=attn_module.to_v.in_features, out_features=attn_module.to_v.out_features, rank=rank |
|
) |
|
) |
|
|
|
if not is_kvcopy: |
|
attn_module.to_q.set_lora_layer( |
|
LoRALinearLayer( |
|
in_features=attn_module.to_q.in_features, out_features=attn_module.to_q.out_features, rank=rank |
|
) |
|
) |
|
|
|
attn_module.to_out[0].set_lora_layer( |
|
LoRALinearLayer( |
|
in_features=attn_module.to_out[0].in_features, |
|
out_features=attn_module.to_out[0].out_features, |
|
rank=rank, |
|
) |
|
) |
|
|
|
def drop_kvs(encoder_kvs, drop_chance): |
|
for layer in encoder_kvs: |
|
len_tokens = encoder_kvs[layer].self_attention.k.shape[1] |
|
idx_to_keep = (torch.rand(len_tokens) > drop_chance) |
|
|
|
encoder_kvs[layer].self_attention.k = encoder_kvs[layer].self_attention.k[:, idx_to_keep] |
|
encoder_kvs[layer].self_attention.v = encoder_kvs[layer].self_attention.v[:, idx_to_keep] |
|
|
|
return encoder_kvs |
|
|
|
def clone_kvs(encoder_kvs): |
|
cloned_kvs = {} |
|
for layer in encoder_kvs: |
|
sa_cpy = KVCache(k=encoder_kvs[layer].self_attention.k.clone(), |
|
v=encoder_kvs[layer].self_attention.v.clone()) |
|
|
|
ca_cpy = KVCache(k=encoder_kvs[layer].cross_attention.k.clone(), |
|
v=encoder_kvs[layer].cross_attention.v.clone()) |
|
|
|
cloned_layer_cache = AttentionCache(self_attention=sa_cpy, cross_attention=ca_cpy) |
|
|
|
cloned_kvs[layer] = cloned_layer_cache |
|
|
|
return cloned_kvs |
|
|
|
|
|
class KVCache(object): |
|
def __init__(self, k, v): |
|
self.k = k |
|
self.v = v |
|
|
|
class AttentionCache(object): |
|
def __init__(self, self_attention: KVCache, cross_attention: KVCache): |
|
self.self_attention = self_attention |
|
self.cross_attention = cross_attention |
|
|
|
class KVCopy(nn.Module): |
|
def __init__( |
|
self, inner_dim, cross_attention_dim=None, |
|
): |
|
super(KVCopy, self).__init__() |
|
|
|
in_dim = cross_attention_dim or inner_dim |
|
|
|
self.to_k = LoRACompatibleLinear(in_dim, inner_dim, bias=False) |
|
self.to_v = LoRACompatibleLinear(in_dim, inner_dim, bias=False) |
|
|
|
def forward(self, hidden_states): |
|
|
|
k = self.to_k(hidden_states) |
|
v = self.to_v(hidden_states) |
|
|
|
return KVCache(k=k, v=v) |
|
|
|
def init_kv_copy(self, source_attn): |
|
with torch.no_grad(): |
|
self.to_k.weight.copy_(source_attn.to_k.weight) |
|
self.to_v.weight.copy_(source_attn.to_v.weight) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
r""" |
|
A feed-forward layer. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input. |
|
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. |
|
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. |
|
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
mult: int = 4, |
|
dropout: float = 0.0, |
|
activation_fn: str = "geglu", |
|
final_dropout: bool = False, |
|
inner_dim=None, |
|
bias: bool = True, |
|
): |
|
super().__init__() |
|
if inner_dim is None: |
|
inner_dim = int(dim * mult) |
|
dim_out = dim_out if dim_out is not None else dim |
|
|
|
if activation_fn == "gelu": |
|
act_fn = GELU(dim, inner_dim, bias=bias) |
|
if activation_fn == "gelu-approximate": |
|
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) |
|
elif activation_fn == "geglu": |
|
act_fn = GEGLU(dim, inner_dim, bias=bias) |
|
elif activation_fn == "geglu-approximate": |
|
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) |
|
|
|
self.net = nn.ModuleList([]) |
|
|
|
self.net.append(act_fn) |
|
|
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) |
|
|
|
if final_dropout: |
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
if len(args) > 0 or kwargs.get("scale", None) is not None: |
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." |
|
deprecate("scale", "1.0.0", deprecation_message) |
|
for module in self.net: |
|
hidden_states = module(hidden_states) |
|
return hidden_states |
|
|
|
|
|
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): |
|
|
|
if hidden_states.shape[chunk_dim] % chunk_size != 0: |
|
raise ValueError( |
|
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." |
|
) |
|
|
|
num_chunks = hidden_states.shape[chunk_dim] // chunk_size |
|
ff_output = torch.cat( |
|
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], |
|
dim=chunk_dim, |
|
) |
|
return ff_output |
|
|
|
|
|
@maybe_allow_in_graph |
|
class GatedSelfAttentionDense(nn.Module): |
|
r""" |
|
A gated self-attention dense layer that combines visual features and object features. |
|
|
|
Parameters: |
|
query_dim (`int`): The number of channels in the query. |
|
context_dim (`int`): The number of channels in the context. |
|
n_heads (`int`): The number of heads to use for attention. |
|
d_head (`int`): The number of channels in each head. |
|
""" |
|
|
|
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): |
|
super().__init__() |
|
|
|
|
|
self.linear = nn.Linear(context_dim, query_dim) |
|
|
|
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) |
|
self.ff = FeedForward(query_dim, activation_fn="geglu") |
|
|
|
self.norm1 = nn.LayerNorm(query_dim) |
|
self.norm2 = nn.LayerNorm(query_dim) |
|
|
|
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) |
|
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) |
|
|
|
self.enabled = True |
|
|
|
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: |
|
if not self.enabled: |
|
return x |
|
|
|
n_visual = x.shape[1] |
|
objs = self.linear(objs) |
|
|
|
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] |
|
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) |
|
|
|
return x |
|
|