|
import argparse |
|
import os |
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="Train Consistency Encoder.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument( |
|
"--data_config_path", |
|
type=str, |
|
required=True, |
|
help=("A folder containing the training data. "), |
|
) |
|
|
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
|
|
parser.add_argument( |
|
"--image_column", |
|
type=str, |
|
default="image", |
|
help="The column of the dataset containing the target image. By " |
|
"default, the standard Image Dataset maps out 'file_name' " |
|
"to 'image'.", |
|
) |
|
parser.add_argument( |
|
"--caption_column", |
|
type=str, |
|
default=None, |
|
help="The column of the dataset containing the instance prompt for each image", |
|
) |
|
|
|
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") |
|
|
|
parser.add_argument( |
|
"--instance_prompt", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", |
|
) |
|
|
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
help="A prompt that is used during validation to verify that the model is learning.", |
|
) |
|
parser.add_argument( |
|
"--num_train_vis_images", |
|
type=int, |
|
default=2, |
|
help="Number of images that should be generated during validation with `validation_prompt`.", |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=2, |
|
help="Number of images that should be generated during validation with `validation_prompt`.", |
|
) |
|
|
|
parser.add_argument( |
|
"--validation_vis_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--train_vis_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--vis_lcm", |
|
type=bool, |
|
default=True, |
|
help=( |
|
"Also log results of LCM inference", |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="lora-dreambooth-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
|
|
parser.add_argument("--save_only_encoder", action="store_true", help="Only save the encoder and not the full accelerator state") |
|
|
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
|
|
parser.add_argument("--freeze_encoder_unet", action="store_true", help="Don't train encoder unet") |
|
parser.add_argument("--predict_word_embedding", action="store_true", help="Predict word embeddings in addition to KV features") |
|
parser.add_argument("--ip_adapter_feature_extractor_path", type=str, help="Path to pre-trained feature extractor for IP-adapter") |
|
parser.add_argument("--ip_adapter_model_path", type=str, help="Path to pre-trained IP-adapter.") |
|
parser.add_argument("--ip_adapter_tokens", type=int, default=16, help="Number of tokens to use in IP-adapter cross attention mechanism") |
|
parser.add_argument("--optimize_adapter", action="store_true", help="Optimize IP-adapter parameters (projector + cross-attention layers)") |
|
parser.add_argument("--adapter_attention_scale", type=float, default=1.0, help="Relative strength of the adapter cross attention layers") |
|
parser.add_argument("--adapter_lr", type=float, help="Learning rate for the adapter parameters. Defaults to the global LR if not provided") |
|
|
|
parser.add_argument("--noisy_encoder_input", action="store_true", help="Noise the encoder input to the same step as the decoder?") |
|
|
|
|
|
parser.add_argument("--adapter_drop_chance", type=float, default=0.0, help="Chance to drop adapter condition input during training") |
|
parser.add_argument("--text_drop_chance", type=float, default=0.0, help="Chance to drop text condition during training") |
|
parser.add_argument("--kv_drop_chance", type=float, default=0.0, help="Chance to drop KV condition during training") |
|
|
|
|
|
|
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=1024, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--crops_coords_top_left_h", |
|
type=int, |
|
default=0, |
|
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), |
|
) |
|
|
|
parser.add_argument( |
|
"--crops_coords_top_left_w", |
|
type=int, |
|
default=0, |
|
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), |
|
) |
|
|
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
|
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
|
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
|
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=500, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" |
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=5, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
|
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
|
|
parser.add_argument("--max_timesteps_for_x0_loss", type=int, default=1001) |
|
|
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
|
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
|
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
|
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
|
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--snr_gamma", |
|
type=float, |
|
default=None, |
|
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " |
|
"More details here: https://arxiv.org/abs/2303.09556.", |
|
) |
|
|
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
|
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
|
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
|
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") |
|
|
|
parser.add_argument( |
|
"--adam_epsilon", |
|
type=float, |
|
default=1e-08, |
|
help="Epsilon value for the Adam optimizer and Prodigy optimizers.", |
|
) |
|
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
|
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="wandb", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
|
|
parser.add_argument( |
|
"--rank", |
|
type=int, |
|
default=4, |
|
help=("The dimension of the LoRA update matrices."), |
|
) |
|
|
|
parser.add_argument( |
|
"--pretrained_lcm_lora_path", |
|
type=str, |
|
default="latent-consistency/lcm-lora-sdxl", |
|
help=("Path for lcm lora pretrained"), |
|
) |
|
|
|
parser.add_argument( |
|
"--losses_config_path", |
|
type=str, |
|
required=True, |
|
help=("A yaml file containing losses to use and their weights."), |
|
) |
|
|
|
parser.add_argument( |
|
"--lcm_every_k_steps", |
|
type=int, |
|
default=-1, |
|
help="How often to run lcm. If -1, lcm is not run." |
|
) |
|
|
|
parser.add_argument( |
|
"--lcm_batch_size", |
|
type=int, |
|
default=1, |
|
help="Batch size for lcm." |
|
) |
|
parser.add_argument( |
|
"--lcm_max_timestep", |
|
type=int, |
|
default=1000, |
|
help="Max timestep to use with LCM." |
|
) |
|
|
|
parser.add_argument( |
|
"--lcm_sample_scale_every_k_steps", |
|
type=int, |
|
default=-1, |
|
help="How often to change lcm scale. If -1, scale is fixed at 1." |
|
) |
|
|
|
parser.add_argument( |
|
"--lcm_min_scale", |
|
type=float, |
|
default=0.1, |
|
help="When sampling lcm scale, the minimum scale to use." |
|
) |
|
|
|
parser.add_argument( |
|
"--scale_lcm_by_max_step", |
|
action="store_true", |
|
help="scale LCM lora alpha linearly by the maximal timestep sampled that iteration" |
|
) |
|
|
|
parser.add_argument( |
|
"--lcm_sample_full_lcm_prob", |
|
type=float, |
|
default=0.2, |
|
help="When sampling lcm scale, the probability of using full lcm (scale of 1)." |
|
) |
|
|
|
parser.add_argument( |
|
"--run_on_cpu", |
|
action="store_true", |
|
help="whether to run on cpu or not" |
|
) |
|
|
|
parser.add_argument( |
|
"--experiment_name", |
|
type=str, |
|
help=("A short description of the experiment to add to the wand run log. "), |
|
) |
|
parser.add_argument("--encoder_lora_rank", type=int, default=0, help="Rank of Lora in unet encoder. 0 means no lora") |
|
|
|
parser.add_argument("--kvcopy_lora_rank", type=int, default=0, help="Rank of lora in the kvcopy modules. 0 means no lora") |
|
|
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
args.optimizer = "AdamW" |
|
|
|
return args |