|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextModel, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers.utils.import_utils import is_invisible_watermark_available |
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import ( |
|
FromSingleFileMixin, |
|
IPAdapterMixin, |
|
StableDiffusionXLLoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
) |
|
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel |
|
from diffusers.models.attention_processor import ( |
|
AttnProcessor2_0, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
XFormersAttnProcessor, |
|
) |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.schedulers import KarrasDiffusionSchedulers, LCMScheduler |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
convert_unet_state_dict_to_peft |
|
) |
|
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin |
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput |
|
|
|
|
|
if is_invisible_watermark_available(): |
|
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker |
|
|
|
from peft import LoraConfig, set_peft_model_state_dict |
|
from module.aggregator import Aggregator |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> # !pip install diffusers pillow transformers accelerate |
|
>>> import torch |
|
>>> from PIL import Image |
|
|
|
>>> from diffusers import DDPMScheduler |
|
>>> from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler |
|
|
|
>>> from module.ip_adapter.utils import load_adapter_to_pipe |
|
>>> from pipelines.sdxl_instantir import InstantIRPipeline |
|
|
|
>>> # download models under ./models |
|
>>> dcp_adapter = f'./models/adapter.pt' |
|
>>> previewer_lora_path = f'./models' |
|
>>> instantir_path = f'./models/aggregator.pt' |
|
|
|
>>> # load pretrained models |
|
>>> pipe = InstantIRPipeline.from_pretrained( |
|
... "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16 |
|
... ) |
|
>>> # load adapter |
|
>>> load_adapter_to_pipe( |
|
... pipe, |
|
... dcp_adapter, |
|
... image_encoder_or_path = 'facebook/dinov2-large', |
|
... ) |
|
>>> # load previewer lora |
|
>>> pipe.prepare_previewers(previewer_lora_path) |
|
>>> pipe.scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler") |
|
>>> lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config) |
|
|
|
>>> # load aggregator weights |
|
>>> pretrained_state_dict = torch.load(instantir_path) |
|
>>> pipe.aggregator.load_state_dict(pretrained_state_dict) |
|
|
|
>>> # send to GPU and fp16 |
|
>>> pipe.to(device="cuda", dtype=torch.float16) |
|
>>> pipe.aggregator.to(device="cuda", dtype=torch.float16) |
|
>>> pipe.enable_model_cpu_offload() |
|
|
|
>>> # load a broken image |
|
>>> low_quality_image = Image.open('path/to/your-image').convert("RGB") |
|
|
|
>>> # restoration |
|
>>> image = pipe( |
|
... image=low_quality_image, |
|
... previewer_scheduler=lcm_scheduler, |
|
... ).images[0] |
|
``` |
|
""" |
|
|
|
LCM_LORA_MODULES = [ |
|
"to_q", |
|
"to_k", |
|
"to_v", |
|
"to_out.0", |
|
"proj_in", |
|
"proj_out", |
|
"ff.net.0.proj", |
|
"ff.net.2", |
|
"conv1", |
|
"conv2", |
|
"conv_shortcut", |
|
"downsamplers.0.conv", |
|
"upsamplers.0.conv", |
|
"time_emb_proj", |
|
] |
|
PREVIEWER_LORA_MODULES = [ |
|
"to_q", |
|
"to_kv", |
|
"0.to_out", |
|
"attn1.to_k", |
|
"attn1.to_v", |
|
"to_k_ip", |
|
"to_v_ip", |
|
"ln_k_ip.linear", |
|
"ln_v_ip.linear", |
|
"to_out.0", |
|
"proj_in", |
|
"proj_out", |
|
"ff.net.0.proj", |
|
"ff.net.2", |
|
"conv1", |
|
"conv2", |
|
"conv_shortcut", |
|
"downsamplers.0.conv", |
|
"upsamplers.0.conv", |
|
"time_emb_proj", |
|
] |
|
|
|
|
|
def remove_attn2(model): |
|
def recursive_find_module(name, module): |
|
if not "up_blocks" in name and not "down_blocks" in name and not "mid_block" in name: return |
|
elif "resnets" in name: return |
|
if hasattr(module, "attn2"): |
|
setattr(module, "attn2", None) |
|
setattr(module, "norm2", None) |
|
return |
|
for sub_name, sub_module in module.named_children(): |
|
recursive_find_module(f"{name}.{sub_name}", sub_module) |
|
|
|
for name, module in model.named_children(): |
|
recursive_find_module(name, module) |
|
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
""" |
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
""" |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default |
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` |
|
must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class InstantIRPipeline( |
|
DiffusionPipeline, |
|
StableDiffusionMixin, |
|
TextualInversionLoaderMixin, |
|
StableDiffusionXLLoraLoaderMixin, |
|
IPAdapterMixin, |
|
FromSingleFileMixin, |
|
): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion XL with ControlNet guidance. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]): |
|
Second frozen text-encoder |
|
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
tokenizer_2 ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): |
|
Provides additional conditioning to the `unet` during the denoising process. If you set multiple |
|
ControlNets as a list, the outputs from each ControlNet are added together to create one combined |
|
additional conditioning. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): |
|
Whether the negative prompt embeddings should always be set to 0. Also see the config of |
|
`stabilityai/stable-diffusion-xl-base-1-0`. |
|
add_watermarker (`bool`, *optional*): |
|
Whether to use the [invisible_watermark](https://github.com/ShieldMnt/invisible-watermark/) library to |
|
watermark output images. If not defined, it defaults to `True` if the package is installed; otherwise no |
|
watermarker is used. |
|
""" |
|
|
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" |
|
_optional_components = [ |
|
"tokenizer", |
|
"tokenizer_2", |
|
"text_encoder", |
|
"text_encoder_2", |
|
"feature_extractor", |
|
"image_encoder", |
|
] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
text_encoder_2: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
tokenizer_2: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
aggregator: Aggregator = None, |
|
force_zeros_for_empty_prompt: bool = True, |
|
add_watermarker: Optional[bool] = None, |
|
feature_extractor: CLIPImageProcessor = None, |
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
): |
|
super().__init__() |
|
|
|
if aggregator is None: |
|
aggregator = Aggregator.from_unet(unet) |
|
remove_attn2(aggregator) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
unet=unet, |
|
aggregator=aggregator, |
|
scheduler=scheduler, |
|
feature_extractor=feature_extractor, |
|
image_encoder=image_encoder, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) |
|
self.control_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=True |
|
) |
|
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() |
|
|
|
if add_watermarker: |
|
self.watermark = StableDiffusionXLWatermarker() |
|
else: |
|
self.watermark = None |
|
|
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) |
|
|
|
def prepare_previewers(self, previewer_lora_path: str, use_lcm=False): |
|
if use_lcm: |
|
lora_state_dict, alpha_dict = self.lora_state_dict( |
|
previewer_lora_path, |
|
) |
|
else: |
|
lora_state_dict, alpha_dict = self.lora_state_dict( |
|
previewer_lora_path, |
|
weight_name="previewer_lora_weights.bin" |
|
) |
|
unet_state_dict = { |
|
f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.") |
|
} |
|
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict) |
|
lora_state_dict = dict() |
|
for k, v in unet_state_dict.items(): |
|
if "ip" in k: |
|
k = k.replace("attn2", "attn2.processor") |
|
lora_state_dict[k] = v |
|
else: |
|
lora_state_dict[k] = v |
|
if alpha_dict: |
|
lora_alpha = next(iter(alpha_dict.values())) |
|
else: |
|
lora_alpha = 1 |
|
logger.info(f"use lora alpha {lora_alpha}") |
|
lora_config = LoraConfig( |
|
r=64, |
|
target_modules=LCM_LORA_MODULES if use_lcm else PREVIEWER_LORA_MODULES, |
|
lora_alpha=lora_alpha, |
|
lora_dropout=0.0, |
|
) |
|
|
|
adapter_name = "lcm" if use_lcm else "previewer" |
|
self.unet.add_adapter(lora_config, adapter_name) |
|
incompatible_keys = set_peft_model_state_dict(self.unet, lora_state_dict, adapter_name=adapter_name) |
|
if incompatible_keys is not None: |
|
|
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) |
|
missing_keys = getattr(incompatible_keys, "missing_keys", None) |
|
if unexpected_keys: |
|
raise ValueError( |
|
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " |
|
f" {unexpected_keys}. " |
|
) |
|
self.unet.disable_adapters() |
|
|
|
return lora_alpha |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt: str, |
|
prompt_2: Optional[str] = None, |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: Optional[str] = None, |
|
negative_prompt_2: Optional[str] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if self.text_encoder is not None: |
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
|
|
if prompt is not None: |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] |
|
text_encoders = ( |
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] |
|
) |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 |
|
|
|
|
|
prompt_embeds_list = [] |
|
prompts = [prompt, prompt_2] |
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, tokenizer) |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
if clip_skip is None: |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
else: |
|
|
|
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] |
|
|
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt |
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) |
|
elif do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt_2 = negative_prompt_2 or negative_prompt |
|
|
|
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
|
negative_prompt_2 = ( |
|
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 |
|
) |
|
|
|
uncond_tokens: List[str] |
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
|
|
negative_prompt_embeds_list = [] |
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_embeds = text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
if self.text_encoder_2 is not None: |
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
else: |
|
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
if self.text_encoder_2 is not None: |
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
else: |
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
if do_classifier_free_guidance: |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
if self.text_encoder is not None: |
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if self.text_encoder_2 is not None: |
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if output_hidden_states: |
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_enc_hidden_states = self.image_encoder( |
|
torch.zeros_like(image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( |
|
num_images_per_prompt, dim=0 |
|
) |
|
return image_enc_hidden_states, uncond_image_enc_hidden_states |
|
else: |
|
if isinstance(self.image_encoder, CLIPVisionModelWithProjection): |
|
|
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
else: |
|
|
|
image_embeds = self.image_encoder(image).last_hidden_state |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_embeds = self.image_encoder( |
|
torch.zeros_like(image) |
|
).last_hidden_state |
|
uncond_image_embeds = uncond_image_embeds.repeat_interleave( |
|
num_images_per_prompt, dim=0 |
|
) |
|
|
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
def prepare_ip_adapter_image_embeds( |
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance |
|
): |
|
if ip_adapter_image_embeds is None: |
|
if not isinstance(ip_adapter_image, list): |
|
ip_adapter_image = [ip_adapter_image] |
|
|
|
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): |
|
if isinstance(ip_adapter_image[0], list): |
|
raise ValueError( |
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." |
|
) |
|
else: |
|
logger.warning( |
|
f"Got {len(ip_adapter_image)} images for {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." |
|
" By default, these images will be sent to each IP-Adapter. If this is not your use-case, please specify `ip_adapter_image` as a list of image-list, with" |
|
f" length equals to the number of IP-Adapters." |
|
) |
|
ip_adapter_image = [ip_adapter_image] * len(self.unet.encoder_hid_proj.image_projection_layers) |
|
|
|
image_embeds = [] |
|
for single_ip_adapter_image, image_proj_layer in zip( |
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers |
|
): |
|
output_hidden_state = isinstance(self.image_encoder, CLIPVisionModelWithProjection) and not isinstance(image_proj_layer, ImageProjection) |
|
single_image_embeds, single_negative_image_embeds = self.encode_image( |
|
single_ip_adapter_image, device, 1, output_hidden_state |
|
) |
|
single_image_embeds = torch.stack([single_image_embeds] * (num_images_per_prompt//single_image_embeds.shape[0]), dim=0) |
|
single_negative_image_embeds = torch.stack( |
|
[single_negative_image_embeds] * (num_images_per_prompt//single_negative_image_embeds.shape[0]), dim=0 |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
single_image_embeds = single_image_embeds.to(device) |
|
|
|
image_embeds.append(single_image_embeds) |
|
else: |
|
repeat_dims = [1] |
|
image_embeds = [] |
|
for single_image_embeds in ip_adapter_image_embeds: |
|
if do_classifier_free_guidance: |
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) |
|
single_image_embeds = single_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
) |
|
single_negative_image_embeds = single_negative_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) |
|
) |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
else: |
|
single_image_embeds = single_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
) |
|
image_embeds.append(single_image_embeds) |
|
|
|
return image_embeds |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
image, |
|
callback_steps, |
|
negative_prompt=None, |
|
negative_prompt_2=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
ip_adapter_image=None, |
|
ip_adapter_image_embeds=None, |
|
negative_pooled_prompt_embeds=None, |
|
controlnet_conditioning_scale=1.0, |
|
control_guidance_start=0.0, |
|
control_guidance_end=1.0, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
) |
|
|
|
|
|
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( |
|
self.aggregator, torch._dynamo.eval_frame.OptimizedModule |
|
) |
|
if ( |
|
isinstance(self.aggregator, Aggregator) |
|
or is_compiled |
|
and isinstance(self.aggregator._orig_mod, Aggregator) |
|
): |
|
self.check_image(image, prompt, prompt_embeds) |
|
else: |
|
assert False |
|
|
|
if control_guidance_start >= control_guidance_end: |
|
raise ValueError( |
|
f"control guidance start: {control_guidance_start} cannot be larger or equal to control guidance end: {control_guidance_end}." |
|
) |
|
if control_guidance_start < 0.0: |
|
raise ValueError(f"control guidance start: {control_guidance_start} can't be smaller than 0.") |
|
if control_guidance_end > 1.0: |
|
raise ValueError(f"control guidance end: {control_guidance_end} can't be larger than 1.0.") |
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: |
|
raise ValueError( |
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." |
|
) |
|
|
|
if ip_adapter_image_embeds is not None: |
|
if not isinstance(ip_adapter_image_embeds, list): |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" |
|
) |
|
elif ip_adapter_image_embeds[0].ndim not in [3, 4]: |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" |
|
) |
|
|
|
|
|
def check_image(self, image, prompt, prompt_embeds): |
|
image_is_pil = isinstance(image, PIL.Image.Image) |
|
image_is_tensor = isinstance(image, torch.Tensor) |
|
image_is_np = isinstance(image, np.ndarray) |
|
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) |
|
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) |
|
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) |
|
|
|
if ( |
|
not image_is_pil |
|
and not image_is_tensor |
|
and not image_is_np |
|
and not image_is_pil_list |
|
and not image_is_tensor_list |
|
and not image_is_np_list |
|
): |
|
raise TypeError( |
|
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" |
|
) |
|
|
|
if image_is_pil: |
|
image_batch_size = 1 |
|
else: |
|
image_batch_size = len(image) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
prompt_batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
prompt_batch_size = len(prompt) |
|
elif prompt_embeds is not None: |
|
prompt_batch_size = prompt_embeds.shape[0] |
|
|
|
if image_batch_size != 1 and image_batch_size != prompt_batch_size: |
|
raise ValueError( |
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" |
|
) |
|
|
|
|
|
def prepare_image( |
|
self, |
|
image, |
|
width, |
|
height, |
|
batch_size, |
|
num_images_per_prompt, |
|
device, |
|
dtype, |
|
do_classifier_free_guidance=False, |
|
): |
|
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) |
|
image_batch_size = image.shape[0] |
|
|
|
if image_batch_size == 1: |
|
repeat_by = batch_size |
|
else: |
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
return image |
|
|
|
@torch.no_grad() |
|
def init_latents(self, latents, generator, timestep): |
|
noise = torch.randn(latents.shape, generator=generator, device=self.vae.device, dtype=self.vae.dtype, layout=torch.strided) |
|
bsz = latents.shape[0] |
|
print(f"init latent at {timestep}") |
|
timestep = torch.tensor([timestep]*bsz, device=self.vae.device) |
|
|
|
latents = self.scheduler.add_noise(latents, noise, timestep) |
|
return latents |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def _get_add_time_ids( |
|
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None |
|
): |
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
|
|
passed_add_embed_dim = ( |
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim |
|
) |
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features |
|
|
|
if expected_add_embed_dim != passed_add_embed_dim: |
|
raise ValueError( |
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." |
|
) |
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) |
|
return add_time_ids |
|
|
|
|
|
def upcast_vae(self): |
|
dtype = self.vae.dtype |
|
self.vae.to(dtype=torch.float32) |
|
use_torch_2_0_or_xformers = isinstance( |
|
self.vae.decoder.mid_block.attentions[0].processor, |
|
( |
|
AttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
LoRAXFormersAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
), |
|
) |
|
|
|
|
|
if use_torch_2_0_or_xformers: |
|
self.vae.post_quant_conv.to(dtype) |
|
self.vae.decoder.conv_in.to(dtype) |
|
self.vae.decoder.mid_block.to(dtype) |
|
|
|
|
|
def get_guidance_scale_embedding( |
|
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 |
|
) -> torch.FloatTensor: |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
w (`torch.Tensor`): |
|
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
Dimension of the embeddings to generate. |
|
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): |
|
Data type of the generated embeddings. |
|
|
|
Returns: |
|
`torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`. |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def guidance_rescale(self): |
|
return self._guidance_rescale |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@property |
|
def denoising_end(self): |
|
return self._denoising_end |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
image: PipelineImageInput = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 30, |
|
timesteps: List[int] = None, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 7.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
save_preview_row: bool = False, |
|
init_latents_with_lq: bool = True, |
|
multistep_restore: bool = False, |
|
adastep_restore: bool = False, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
controlnet_conditioning_scale: float = 1.0, |
|
control_guidance_start: float = 0.0, |
|
control_guidance_end: float = 1.0, |
|
preview_start: float = 0.0, |
|
preview_end: float = 1.0, |
|
original_size: Tuple[int, int] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Tuple[int, int] = None, |
|
negative_original_size: Optional[Tuple[int, int]] = None, |
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
negative_target_size: Optional[Tuple[int, int]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
previewer_scheduler: KarrasDiffusionSchedulers = None, |
|
reference_latents: Optional[torch.FloatTensor] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders. |
|
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: |
|
`List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): |
|
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is |
|
specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be |
|
accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height |
|
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in |
|
`init`, images must be passed as a list such that each element of the list can be correctly batched for |
|
input to a single ControlNet. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
denoising_end (`float`, *optional*): |
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will |
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the |
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a |
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image |
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) |
|
guidance_scale (`float`, *optional*, defaults to 5.0): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. This is sent to `tokenizer_2` |
|
and `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, pooled text embeddings are generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs (prompt |
|
weighting). If not provided, pooled `negative_prompt_embeds` are generated from `negative_prompt` input |
|
argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should |
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added |
|
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set |
|
the corresponding scale as a list. |
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): |
|
The percentage of total steps at which the ControlNet starts applying. |
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): |
|
The percentage of total steps at which the ControlNet stops applying. |
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. |
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as |
|
explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in |
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a target image resolution. It should be as same |
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned containing the output images. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
|
|
aggregator = self.aggregator._orig_mod if is_compiled_module(self.aggregator) else self.aggregator |
|
if not isinstance(ip_adapter_image, list): |
|
ip_adapter_image = [ip_adapter_image] if ip_adapter_image is not None else [image] |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
image, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
negative_pooled_prompt_embeds, |
|
controlnet_conditioning_scale, |
|
control_guidance_start, |
|
control_guidance_end, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._denoising_end = denoising_end |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
if not isinstance(image, PIL.Image.Image): |
|
batch_size = len(image) |
|
else: |
|
batch_size = 1 |
|
prompt = [prompt] * batch_size |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
assert batch_size == len(image) or (isinstance(image, PIL.Image.Image) or len(image) == 1) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
assert batch_size == len(image) or (isinstance(image, PIL.Image.Image) or len(image) == 1) |
|
|
|
device = self._execution_device |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
) |
|
|
|
|
|
image = self.prepare_image( |
|
image=image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=aggregator.dtype, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
) |
|
height, width = image.shape[-2:] |
|
if image.shape[1] != 4: |
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
if needs_upcasting: |
|
image = image.float() |
|
self.vae.to(dtype=torch.float32) |
|
image = self.vae.encode(image).latent_dist.sample() |
|
image = image * self.vae.config.scaling_factor |
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
image = image.to(dtype=torch.float16) |
|
else: |
|
height = int(height * self.vae_scale_factor) |
|
width = int(width * self.vae_scale_factor) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
|
|
|
|
if init_latents_with_lq: |
|
latents = self.init_latents(image, generator, timesteps[0]) |
|
else: |
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
controlnet_keep = [] |
|
previewing = [] |
|
for i in range(len(timesteps)): |
|
keeps = 1.0 - float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end) |
|
controlnet_keep.append(keeps) |
|
use_preview = 1.0 - float(i / len(timesteps) < preview_start or (i + 1) / len(timesteps) > preview_end) |
|
previewing.append(use_preview) |
|
if isinstance(controlnet_conditioning_scale, list): |
|
assert len(controlnet_conditioning_scale) == len(timesteps), f"{len(controlnet_conditioning_scale)} controlnet scales do not match number of sampling steps {len(timesteps)}" |
|
else: |
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet_keep) |
|
|
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
if self.text_encoder_2 is None: |
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) |
|
else: |
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim |
|
|
|
add_time_ids = self._get_add_time_ids( |
|
original_size, |
|
crops_coords_top_left, |
|
target_size, |
|
dtype=prompt_embeds.dtype, |
|
text_encoder_projection_dim=text_encoder_projection_dim, |
|
) |
|
|
|
if negative_original_size is not None and negative_target_size is not None: |
|
negative_add_time_ids = self._get_add_time_ids( |
|
negative_original_size, |
|
negative_crops_coords_top_left, |
|
negative_target_size, |
|
dtype=prompt_embeds.dtype, |
|
text_encoder_projection_dim=text_encoder_projection_dim, |
|
) |
|
else: |
|
negative_add_time_ids = add_time_ids |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) |
|
image = torch.cat([image] * 2, dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
|
|
if ( |
|
self.denoising_end is not None |
|
and isinstance(self.denoising_end, float) |
|
and self.denoising_end > 0 |
|
and self.denoising_end < 1 |
|
): |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (self.denoising_end * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) |
|
timesteps = timesteps[:num_inference_steps] |
|
|
|
is_unet_compiled = is_compiled_module(self.unet) |
|
is_aggregator_compiled = is_compiled_module(self.aggregator) |
|
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") |
|
previewer_mean = torch.zeros_like(latents) |
|
unet_mean = torch.zeros_like(latents) |
|
preview_factor = torch.ones( |
|
(latents.shape[0], *((1,) * (len(latents.shape) - 1))), dtype=latents.dtype, device=latents.device |
|
) |
|
|
|
self._num_timesteps = len(timesteps) |
|
preview_row = [] |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
if (is_unet_compiled and is_aggregator_compiled) and is_torch_higher_equal_2_1: |
|
torch._inductor.cudagraph_mark_step_begin() |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
prev_t = t |
|
unet_model_input = latent_model_input |
|
|
|
added_cond_kwargs = { |
|
"text_embeds": add_text_embeds, |
|
"time_ids": add_time_ids, |
|
"image_embeds": image_embeds |
|
} |
|
aggregator_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
|
|
|
|
cross_attention_t_emb = self.unet.get_time_embed(sample=latent_model_input, timestep=t) |
|
cross_attention_emb = self.unet.time_embedding(cross_attention_t_emb, timestep_cond) |
|
cross_attention_aug_emb = None |
|
|
|
cross_attention_aug_emb = self.unet.get_aug_embed( |
|
emb=cross_attention_emb, |
|
encoder_hidden_states=prompt_embeds, |
|
added_cond_kwargs=added_cond_kwargs |
|
) |
|
|
|
cross_attention_emb = cross_attention_emb + cross_attention_aug_emb if cross_attention_aug_emb is not None else cross_attention_emb |
|
|
|
if self.unet.time_embed_act is not None: |
|
cross_attention_emb = self.unet.time_embed_act(cross_attention_emb) |
|
|
|
current_cross_attention_kwargs = {"temb": cross_attention_emb} |
|
if cross_attention_kwargs is not None: |
|
for k,v in cross_attention_kwargs.items(): |
|
current_cross_attention_kwargs[k] = v |
|
self._cross_attention_kwargs = current_cross_attention_kwargs |
|
|
|
|
|
adaRes_scale = preview_factor.to(latent_model_input.dtype).clamp(0.0, controlnet_conditioning_scale[i]) |
|
cond_scale = adaRes_scale * controlnet_keep[i] |
|
cond_scale = torch.cat([cond_scale] * 2) if self.do_classifier_free_guidance else cond_scale |
|
|
|
if (cond_scale>0.1).sum().item() > 0: |
|
if previewing[i] > 0: |
|
|
|
self.unet.enable_adapters() |
|
preview_noise = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
preview_latent = previewer_scheduler.step( |
|
preview_noise, |
|
t.to(dtype=torch.int64), |
|
|
|
latent_model_input, |
|
return_dict=False |
|
)[0] |
|
self.unet.disable_adapters() |
|
|
|
if self.do_classifier_free_guidance: |
|
preview_row.append(preview_latent.chunk(2)[1].to('cpu')) |
|
else: |
|
preview_row.append(preview_latent.to('cpu')) |
|
|
|
if multistep_restore and i+1 < len(timesteps): |
|
noise_preview = preview_noise.chunk(2)[1] if self.do_classifier_free_guidance else preview_noise |
|
first_step = self.scheduler.step( |
|
noise_preview, t, latents, |
|
**extra_step_kwargs, return_dict=True, step_forward=False |
|
) |
|
prev_t = timesteps[i + 1] |
|
unet_model_input = torch.cat([first_step.prev_sample] * 2) if self.do_classifier_free_guidance else first_step.prev_sample |
|
unet_model_input = self.scheduler.scale_model_input(unet_model_input, prev_t, heun_step=True) |
|
|
|
elif reference_latents is not None: |
|
preview_latent = torch.cat([reference_latents] * 2) if self.do_classifier_free_guidance else reference_latents |
|
else: |
|
preview_latent = image |
|
|
|
|
|
|
|
|
|
|
|
preview_latent=preview_latent.to(dtype=next(aggregator.parameters()).dtype) |
|
|
|
|
|
down_block_res_samples, mid_block_res_sample = aggregator( |
|
image, |
|
prev_t, |
|
encoder_hidden_states=prompt_embeds, |
|
controlnet_cond=preview_latent, |
|
|
|
added_cond_kwargs=aggregator_added_cond_kwargs, |
|
return_dict=False, |
|
) |
|
|
|
|
|
down_block_res_samples = [sample*cond_scale for sample in down_block_res_samples] |
|
mid_block_res_sample = mid_block_res_sample*cond_scale |
|
|
|
|
|
noise_pred = self.unet( |
|
unet_model_input, |
|
prev_t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
unet_step = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=True) |
|
latents = unet_step.prev_sample |
|
|
|
|
|
unet_pred_latent = unet_step.pred_original_sample |
|
|
|
|
|
if adastep_restore: |
|
pred_x0_l2 = ((preview_latent[latents.shape[0]:].float()-unet_pred_latent.float())).pow(2).sum(dim=(1,2,3)) |
|
previewer_l2 = ((preview_latent[latents.shape[0]:].float()-previewer_mean.float())).pow(2).sum(dim=(1,2,3)) |
|
|
|
|
|
|
|
previewer_mean = preview_latent[latents.shape[0]:] |
|
unet_mean = unet_pred_latent |
|
preview_factor = (pred_x0_l2 / previewer_l2).reshape(-1, 1, 1, 1) |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
|
|
|
|
|
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None |
|
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None |
|
if has_latents_mean and has_latents_std: |
|
latents_mean = ( |
|
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) |
|
) |
|
latents_std = ( |
|
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) |
|
) |
|
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean |
|
else: |
|
latents = latents / self.vae.config.scaling_factor |
|
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
|
|
if self.watermark is not None: |
|
image = self.watermark.apply_watermark(image) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
if save_preview_row: |
|
preview_image_row = [] |
|
if needs_upcasting: |
|
self.upcast_vae() |
|
for preview_latents in preview_row: |
|
preview_latents = preview_latents.to(device=self.device, dtype=next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
if has_latents_mean and has_latents_std: |
|
latents_mean = ( |
|
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(preview_latents.device, preview_latents.dtype) |
|
) |
|
latents_std = ( |
|
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(preview_latents.device, preview_latents.dtype) |
|
) |
|
preview_latents = preview_latents * latents_std / self.vae.config.scaling_factor + latents_mean |
|
else: |
|
preview_latents = preview_latents / self.vae.config.scaling_factor |
|
|
|
preview_image = self.vae.decode(preview_latents, return_dict=False)[0] |
|
preview_image = self.image_processor.postprocess(preview_image, output_type=output_type) |
|
preview_image_row.append(preview_image) |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
if save_preview_row: |
|
return (image, preview_image_row) |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|