import pickle import nltk from sklearn.svm import SVC from sklearn.svm import LinearSVC from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction import DictVectorizer from sklearn.metrics import classification_report from nltk.tokenize import word_tokenize from datasets import load_dataset import numpy as np from tqdm import tqdm import gradio as gr import matplotlib.pyplot as plt from sklearn import metrics nltk.download('stopwords') nltk.download('punkt_tab') SW = set(nltk.corpus.stopwords.words("english")) PUNCT = set([".", ",", "!", "?", ":", ";", "-", "(", ")", "[", "]", "{", "}", "'", '"']) Features_count = 6 SEED = 42 SW = set(nltk.corpus.stopwords.words("english")) PUNCT = set([".", ",", "!", "?", ":", ";", "-", "(", ")", "[", "]", "{", "}", "'", '"']) connectors = set(["of", "in", "and", "for", "to", "with", "at", "from"]) start_words = set(["the", "a", "an", "this", "that", "these", "those", "my", "your", "his", "her", "its", "our", "their", "few", "many", "several", "all", "most", "some", "any", "every", "each", "either", "neither", "both", "another", "other", "more", "less", "fewer", "little", "much", "great", "good", "bad", "first", "second", "third", "last", "next", "previous"]) Features_count = 6 SEED = 42 class NEI: def __init__(self): self.model = None self.scaler = StandardScaler() self.vectorizer = DictVectorizer(sparse=True) self.tagset = ['No-Name[0]', 'Name[1]'] def load_dataset(self, file): sentences = [] sentence = [] with open(file, 'r', encoding='utf-8') as file: for line in file: if line.strip() == "": if sentence: sentences.append(sentence) sentence = [] continue word_info = line.strip().split() if len(word_info) != 4: continue word, pos, chunk, nei = word_info sentence.append((word, pos, nei)) if sentence: sentences.append(sentence) return sentences def performance(self, y_true, y_pred): print(classification_report(y_true, y_pred)) precision = metrics.precision_score(y_true,y_pred,average='weighted',zero_division=0) recall = metrics.recall_score(y_true,y_pred,average='weighted',zero_division=0) f05_Score = metrics.fbeta_score(y_true,y_pred,beta=0.5,average='weighted',zero_division=0) f1_Score = metrics.fbeta_score(y_true,y_pred,beta=1,average='weighted',zero_division=0) f2_Score = metrics.fbeta_score(y_true,y_pred,beta=2,average='weighted',zero_division=0) print(f"Average Precision = {precision:.2f}, Average Recall = {recall:.2f}, Average f05-Score = {f05_Score:.2f}, Average f1-Score = {f1_Score:.2f}, Average f2-Score = {f2_Score:.2f}") def confusion_matrix(self,y_true,y_pred): matrix = metrics.confusion_matrix(y_true,y_pred) normalized_matrix = matrix/np.sum(matrix, axis=1, keepdims=True) # disp = metrics.ConfusionMatrixDisplay(confusion_matrix=normalized_matrix, display_labels=self.tagset) fig, ax = plt.subplots() # disp.plot(cmap=plt.cm.GnBu, ax=ax, colorbar=True) ax.xaxis.set_ticks_position('top') ax.xaxis.set_label_position('top') plt.xticks(np.arange(len(self.tagset)), self.tagset) plt.yticks(np.arange(len(self.tagset)), self.tagset) for i in range(normalized_matrix.shape[0]): for j in range(normalized_matrix.shape[1]): text = f"{normalized_matrix[i, j]:.2f}" ax.text(j, i, text, ha="center", va="center", color="black") plt.title("Normalized Confusion Matrix") plt.xlabel("Predicted Label") plt.ylabel("True Label") plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu) plt.colorbar() plt.savefig('Confusion_Matrix.png') # plt.xticks(np.arange(len(self.tagset)), self.tagset) # plt.yticks(np.arange(len(self.tagset)), self.tagset) # for i in range(normalized_matrix.shape[0]): # for j in range(normalized_matrix.shape[1]): # plt.text(j, i, format(normalized_matrix[i, j], '0.2f'), horizontalalignment="center") # plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu) # plt.colorbar() # plt.savefig('Confusion_Matrix.png') def vectorize(self, w, scaled_position, prev_tag=0, next_tag=0): is_titlecase = 1 if w[0].isupper() else 0 is_allcaps = 1 if w.isupper() else 0 is_sw = 1 if w.lower() in SW else 0 is_punct = 1 if w in PUNCT else 0 # is_surrounded_by_entities = 1 if (prev_tag > 0 and next_tag > 0) else 0 is_connector = 1 if (w.lower() in connectors) and (prev_tag > 0 and next_tag > 0) else 0 # is_start_of_sentence = 1 if (scaled_position == 0 or prev_token in [".", "!", "?"]) and w.lower() not in start_words else 0 # is_start_of_sentence = 1 if scaled_position == 0 else 0 return [is_titlecase, is_allcaps, len(w), is_sw, is_punct, is_connector, scaled_position] def create_data(self, data): words, features, labels = [], [], [] for d in tqdm(data): tags = d["ner_tags"] tokens = d["tokens"] for i, token in enumerate(tokens): prev_tag = tags[i - 1] if i > 0 else 0 next_tag = tags[i + 1] if i < len(tokens) - 1 else 0 x = self.vectorize(token, scaled_position=(i / len(tokens)), prev_tag=prev_tag, next_tag=next_tag) y = 1 if tags[i] > 0 else 0 features.append(x) labels.append(y) words.extend(tokens) return np.array(words, dtype="object"), np.array(features, dtype=np.float32), np.array(labels, dtype=np.float32) def train(self, train_dataset): _, X_train, y_train = self.create_data(train_dataset) self.scaler.fit(X_train) X_train = self.scaler.transform(X_train) self.model = SVC(C=1.0, kernel="linear", class_weight="balanced", random_state=SEED, verbose=True) self.model.fit(X_train, y_train) def evaluate(self, val_data): _, X_val, y_val = self.create_data(val_data) X_val = self.scaler.transform(X_val) y_pred_val = self.model.predict(X_val) # print(classification_report(y_true=y_val, y_pred=y_pred_val)) print(metrics.confusion_matrix(y_val,y_pred_val)) self.confusion_matrix(y_val,y_pred_val) self.performance(y_val,y_pred_val) def infer(self, sentence): tokens = word_tokenize(sentence) features = [] raw_features = [self.vectorize(token, i / len(tokens)) for i, token in enumerate(tokens)] raw_features = np.array(raw_features, dtype=np.float32) scaled_features = self.scaler.transform(raw_features) y_pred = self.model.predict(scaled_features) for i, token in enumerate(tokens): prev_tag = y_pred[i - 1] if i > 0 else 0 next_tag = y_pred[i + 1] if i < len(tokens) - 1 else 0 feature_with_context = self.vectorize(token, i / len(tokens), prev_tag, next_tag) features.append(feature_with_context) features = np.array(features, dtype=np.float32) scaled_features = self.scaler.transform(features) y_pred = self.model.predict(scaled_features) return list(zip(tokens, y_pred)) data = load_dataset("conll2003", trust_remote_code=True) nei_model = NEI() # Training the model nei_model.train(data["train"]) # Evaluating the model nei_model.evaluate(data["validation"]) def annotate(text): predictions = nei_model.infer(text) annotated_output = " ".join([f"{word}_{int(label)} " for word, label in predictions]) return annotated_output interface = gr.Interface(fn = annotate, inputs = gr.Textbox( label="Input Sentence", placeholder="Enter your sentence here...", ), outputs = gr.Textbox( label="Tagged Output", placeholder="Tagged sentence appears here...", ), title = "Named Entity Recognition", description = "CS626 Assignment 3 (Autumn 2024)", theme=gr.themes.Soft()) interface.launch()