CS626-NEI / app.py
madhavkotecha's picture
Update app.py
89435c1 verified
raw
history blame
7.62 kB
import pickle
import nltk
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction import DictVectorizer
from sklearn.metrics import classification_report
from nltk.tokenize import word_tokenize
from datasets import load_dataset
import numpy as np
from tqdm import tqdm
import gradio as gr
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.model_selection import KFold
nltk.download('stopwords')
nltk.download('punkt_tab')
SW = set(nltk.corpus.stopwords.words("english"))
PUNCT = set([".", ",", "!", "?", ":", ";", "-", "(", ")", "[", "]", "{", "}", "'", '"'])
Features_count = 6
SEED = 42
class NEI:
def __init__(self):
self.model = None
self.scaler = StandardScaler()
self.vectorizer = DictVectorizer(sparse=True)
self.tagset = ['Name[1]', 'No-Name[0]']
def load_dataset(self, file):
sentences = []
sentence = []
with open(file, 'r', encoding='utf-8') as file:
for line in file:
if line.strip() == "":
if sentence:
sentences.append(sentence)
sentence = []
continue
word_info = line.strip().split()
if len(word_info) != 4:
continue
word, pos, chunk, nei = word_info
sentence.append((word, pos, nei))
if sentence:
sentences.append(sentence)
return sentences
def sent2features(self, sentence):
return [self.word2features(sentence, i) for i in range(len(sentence))]
def sent2labels(self, sentence):
return [label for _, _, label in sentence]
def word2features(self, sentence, i):
word = sentence[i][0]
pos_tag = sentence[i][1]
features = {
'word': word,
'pos_tag': pos_tag,
'word.isupper': int(word.isupper()),
'word.islower': int(word.islower()),
'word.istitle': int(word.istitle()),
'word.isdigit': int(word.isdigit()),
'word.prefix2': word[:2],
'word.prefix3': word[:3],
'word.suffix2': word[-2:],
'word.suffix3': word[-3:],
}
# Add context features
if i > 0:
prv_word = sentence[i - 1][0]
prv_pos_tag = sentence[i - 1][1]
features.update({
'-1:word': prv_word,
'-1:pos_tag': prv_pos_tag,
'-1:word.isupper': int(prv_word.isupper()),
'-1:word.istitle': int(prv_word.istitle()),
})
else:
features['BOS'] = True
if i < len(sentence) - 1:
next_word = sentence[i + 1][0]
next_pos_tag = sentence[i + 1][1]
features.update({
'+1:word': next_word,
'+1:pos_tag': next_pos_tag,
'+1:word.isupper': int(next_word.isupper()),
'+1:word.istitle': int(next_word.istitle()),
})
else:
features['EOS'] = True
return features
def performance(self, y_true, y_pred):
print(classification_report(y_true, y_pred))
precision = metrics.precision_score(y_true,y_pred,average='weighted',zero_division=0)
recall = metrics.recall_score(y_true,y_pred,average='weighted',zero_division=0)
f05_Score = metrics.fbeta_score(y_true,y_pred,beta=0.5,average='weighted',zero_division=0)
f1_Score = metrics.fbeta_score(y_true,y_pred,beta=1,average='weighted',zero_division=0)
f2_Score = metrics.fbeta_score(y_true,y_pred,beta=2,average='weighted',zero_division=0)
print(f"Average Precision = {precision:.2f}, Average Recall = {recall:.2f}, Average f05-Score = {f05_Score:.2f}, Average f1-Score = {f1_Score:.2f}, Average f2-Score = {f2_Score:.2f}")
def confusion_matrix(self,y_true,y_pred):
matrix = metrics.confusion_matrix(y_true,y_pred)
normalized_matrix = matrix/np.sum(matrix, axis=1, keepdims=True)
_, ax = plt.subplots()
ax.tick_params(top=True)
plt.xticks(np.arange(len(self.tagset)), self.tagset)
plt.yticks(np.arange(len(self.tagset)), self.tagset)
for i in range(normalized_matrix.shape[0]):
for j in range(normalized_matrix.shape[1]):
plt.text(j, i, format(normalized_matrix[i, j], '0.2f'), horizontalalignment="center")
plt.imshow(normalized_matrix,interpolation='nearest',cmap=plt.cm.GnBu)
plt.colorbar()
plt.savefig('Confusion_Matrix.png')
def vectorize(self, w, scaled_position):
title = 1 if w[0].isupper() else 0
allcaps = 1 if w.isupper() else 0
sw = 1 if w.lower() in SW else 0
punct = 1 if w in PUNCT else 0
return [title, allcaps, len(w), sw, punct, scaled_position]
def create_data(self, data):
words, features, labels = [], [], []
for d in tqdm(data):
tags = d["ner_tags"]
tokens = d["tokens"]
for i, token in enumerate(tokens):
x = self.vectorize(token, scaled_position=(i / len(tokens)))
y = 1 if tags[i] > 0 else 0
features.append(x)
labels.append(y)
words.extend(tokens)
return np.array(words, dtype="object"), np.array(features, dtype=np.float32), np.array(labels, dtype=np.float32)
def train(self, train_dataset):
_, X_train, y_train = self.create_data(train_dataset)
self.scaler.fit(X_train)
X_train = self.scaler.transform(X_train)
self.model = SVC(C=1.0, kernel="linear", class_weight="balanced", random_state=SEED, verbose=True)
self.model.fit(X_train, y_train)
def evaluate(self, val_data):
_, X_val, y_val = self.create_data(val_data)
X_val = self.scaler.transform(X_val)
y_pred_val = self.model.predict(X_val)
# print(classification_report(y_true=y_val, y_pred=y_pred_val))
self.confusion_matrix(y_val,y_pred_val)
self.performance(y_val,y_pred_val)
def infer(self, sentence):
tokens = word_tokenize(sentence)
features = [self.vectorize(token, i / len(tokens)) for i, token in enumerate(tokens)]
features = np.array(features, dtype=np.float32)
scaled_features = self.scaler.transform(features)
y_pred = self.model.predict(scaled_features)
return list(zip(tokens, y_pred))
data = load_dataset("conll2003", trust_remote_code=True)
nei_model = NEI()
# Training the model
nei_model.train(data["train"])
# Evaluating the model
nei_model.evaluate(data["validation"])
def annotate(text):
predictions = nei_model.infer(text)
annotated_output = " ".join([f"{word}_{int(label)} " for word, label in predictions])
return annotated_output
interface = gr.Interface(fn = annotate,
inputs = gr.Textbox(
label="Input Sentence",
placeholder="Enter your sentence here...",
),
outputs = gr.Textbox(
label="Tagged Output",
placeholder="Tagged sentence appears here...",
),
title = "Named Entity Recognition",
description = "CS626 Assignment 2 (Autumn 2024)",
theme=gr.themes.Soft())
interface.launch()