/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * cub::DeviceRle provides device-wide, parallel operations for run-length-encoding sequences of data items residing within device-accessible memory. */ #pragma once #include #include #include "dispatch_scan.cuh" #include "../../config.cuh" #include "../../agent/agent_rle.cuh" #include "../../thread/thread_operators.cuh" #include "../../grid/grid_queue.cuh" #include "../../util_device.cuh" #include /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /****************************************************************************** * Kernel entry points *****************************************************************************/ /** * Select kernel entry point (multi-block) * * Performs functor-based selection if SelectOp functor type != NullType * Otherwise performs flag-based selection if FlagIterator's value type != NullType * Otherwise performs discontinuity selection (keep unique) */ template < typename AgentRlePolicyT, ///< Parameterized AgentRlePolicyT tuning policy type typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator typename OffsetsOutputIteratorT, ///< Random-access output iterator type for writing run-offset values \iterator typename LengthsOutputIteratorT, ///< Random-access output iterator type for writing run-length values \iterator typename NumRunsOutputIteratorT, ///< Output iterator type for recording the number of runs encountered \iterator typename ScanTileStateT, ///< Tile status interface type typename EqualityOpT, ///< T equality operator type typename OffsetT> ///< Signed integer type for global offsets __launch_bounds__ (int(AgentRlePolicyT::BLOCK_THREADS)) __global__ void DeviceRleSweepKernel( InputIteratorT d_in, ///< [in] Pointer to input sequence of data items OffsetsOutputIteratorT d_offsets_out, ///< [out] Pointer to output sequence of run-offsets LengthsOutputIteratorT d_lengths_out, ///< [out] Pointer to output sequence of run-lengths NumRunsOutputIteratorT d_num_runs_out, ///< [out] Pointer to total number of runs (i.e., length of \p d_offsets_out) ScanTileStateT tile_status, ///< [in] Tile status interface EqualityOpT equality_op, ///< [in] Equality operator for input items OffsetT num_items, ///< [in] Total number of input items (i.e., length of \p d_in) int num_tiles) ///< [in] Total number of tiles for the entire problem { // Thread block type for selecting data from input tiles typedef AgentRle< AgentRlePolicyT, InputIteratorT, OffsetsOutputIteratorT, LengthsOutputIteratorT, EqualityOpT, OffsetT> AgentRleT; // Shared memory for AgentRle __shared__ typename AgentRleT::TempStorage temp_storage; // Process tiles AgentRleT(temp_storage, d_in, d_offsets_out, d_lengths_out, equality_op, num_items).ConsumeRange( num_tiles, tile_status, d_num_runs_out); } /****************************************************************************** * Dispatch ******************************************************************************/ /** * Utility class for dispatching the appropriately-tuned kernels for DeviceRle */ template < typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator typename OffsetsOutputIteratorT, ///< Random-access output iterator type for writing run-offset values \iterator typename LengthsOutputIteratorT, ///< Random-access output iterator type for writing run-length values \iterator typename NumRunsOutputIteratorT, ///< Output iterator type for recording the number of runs encountered \iterator typename EqualityOpT, ///< T equality operator type typename OffsetT> ///< Signed integer type for global offsets struct DeviceRleDispatch { /****************************************************************************** * Types and constants ******************************************************************************/ // The input value type typedef typename std::iterator_traits::value_type T; // The lengths output value type typedef typename If<(Equals::value_type, void>::VALUE), // LengthT = (if output iterator's value type is void) ? OffsetT, // ... then the OffsetT type, typename std::iterator_traits::value_type>::Type LengthT; // ... else the output iterator's value type enum { INIT_KERNEL_THREADS = 128, }; // Tile status descriptor interface type typedef ReduceByKeyScanTileState ScanTileStateT; /****************************************************************************** * Tuning policies ******************************************************************************/ /// SM35 struct Policy350 { enum { NOMINAL_4B_ITEMS_PER_THREAD = 15, ITEMS_PER_THREAD = CUB_MIN(NOMINAL_4B_ITEMS_PER_THREAD, CUB_MAX(1, (NOMINAL_4B_ITEMS_PER_THREAD * 4 / sizeof(T)))), }; typedef AgentRlePolicy< 96, ITEMS_PER_THREAD, BLOCK_LOAD_DIRECT, LOAD_LDG, true, BLOCK_SCAN_WARP_SCANS> RleSweepPolicy; }; /// SM30 struct Policy300 { enum { NOMINAL_4B_ITEMS_PER_THREAD = 5, ITEMS_PER_THREAD = CUB_MIN(NOMINAL_4B_ITEMS_PER_THREAD, CUB_MAX(1, (NOMINAL_4B_ITEMS_PER_THREAD * 4 / sizeof(T)))), }; typedef AgentRlePolicy< 256, ITEMS_PER_THREAD, BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, true, BLOCK_SCAN_RAKING_MEMOIZE> RleSweepPolicy; }; /// SM20 struct Policy200 { enum { NOMINAL_4B_ITEMS_PER_THREAD = 15, ITEMS_PER_THREAD = CUB_MIN(NOMINAL_4B_ITEMS_PER_THREAD, CUB_MAX(1, (NOMINAL_4B_ITEMS_PER_THREAD * 4 / sizeof(T)))), }; typedef AgentRlePolicy< 128, ITEMS_PER_THREAD, BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, false, BLOCK_SCAN_WARP_SCANS> RleSweepPolicy; }; /// SM13 struct Policy130 { enum { NOMINAL_4B_ITEMS_PER_THREAD = 9, ITEMS_PER_THREAD = CUB_MIN(NOMINAL_4B_ITEMS_PER_THREAD, CUB_MAX(1, (NOMINAL_4B_ITEMS_PER_THREAD * 4 / sizeof(T)))), }; typedef AgentRlePolicy< 64, ITEMS_PER_THREAD, BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, true, BLOCK_SCAN_RAKING_MEMOIZE> RleSweepPolicy; }; /// SM10 struct Policy100 { enum { NOMINAL_4B_ITEMS_PER_THREAD = 9, ITEMS_PER_THREAD = CUB_MIN(NOMINAL_4B_ITEMS_PER_THREAD, CUB_MAX(1, (NOMINAL_4B_ITEMS_PER_THREAD * 4 / sizeof(T)))), }; typedef AgentRlePolicy< 256, ITEMS_PER_THREAD, BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, true, BLOCK_SCAN_RAKING_MEMOIZE> RleSweepPolicy; }; /****************************************************************************** * Tuning policies of current PTX compiler pass ******************************************************************************/ #if (CUB_PTX_ARCH >= 350) typedef Policy350 PtxPolicy; #elif (CUB_PTX_ARCH >= 300) typedef Policy300 PtxPolicy; #elif (CUB_PTX_ARCH >= 200) typedef Policy200 PtxPolicy; #elif (CUB_PTX_ARCH >= 130) typedef Policy130 PtxPolicy; #else typedef Policy100 PtxPolicy; #endif // "Opaque" policies (whose parameterizations aren't reflected in the type signature) struct PtxRleSweepPolicy : PtxPolicy::RleSweepPolicy {}; /****************************************************************************** * Utilities ******************************************************************************/ /** * Initialize kernel dispatch configurations with the policies corresponding to the PTX assembly we will use */ template CUB_RUNTIME_FUNCTION __forceinline__ static void InitConfigs( int ptx_version, KernelConfig& device_rle_config) { if (CUB_IS_DEVICE_CODE) { #if CUB_INCLUDE_DEVICE_CODE // We're on the device, so initialize the kernel dispatch configurations with the current PTX policy device_rle_config.template Init(); #endif } else { #if CUB_INCLUDE_HOST_CODE // We're on the host, so lookup and initialize the kernel dispatch configurations with the policies that match the device's PTX version if (ptx_version >= 350) { device_rle_config.template Init(); } else if (ptx_version >= 300) { device_rle_config.template Init(); } else if (ptx_version >= 200) { device_rle_config.template Init(); } else if (ptx_version >= 130) { device_rle_config.template Init(); } else { device_rle_config.template Init(); } #endif } } /** * Kernel kernel dispatch configuration. Mirrors the constants within AgentRlePolicyT. */ struct KernelConfig { int block_threads; int items_per_thread; BlockLoadAlgorithm load_policy; bool store_warp_time_slicing; BlockScanAlgorithm scan_algorithm; template CUB_RUNTIME_FUNCTION __forceinline__ void Init() { block_threads = AgentRlePolicyT::BLOCK_THREADS; items_per_thread = AgentRlePolicyT::ITEMS_PER_THREAD; load_policy = AgentRlePolicyT::LOAD_ALGORITHM; store_warp_time_slicing = AgentRlePolicyT::STORE_WARP_TIME_SLICING; scan_algorithm = AgentRlePolicyT::SCAN_ALGORITHM; } CUB_RUNTIME_FUNCTION __forceinline__ void Print() { printf("%d, %d, %d, %d, %d", block_threads, items_per_thread, load_policy, store_warp_time_slicing, scan_algorithm); } }; /****************************************************************************** * Dispatch entrypoints ******************************************************************************/ /** * Internal dispatch routine for computing a device-wide run-length-encode using the * specified kernel functions. */ template < typename DeviceScanInitKernelPtr, ///< Function type of cub::DeviceScanInitKernel typename DeviceRleSweepKernelPtr> ///< Function type of cub::DeviceRleSweepKernelPtr CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t Dispatch( void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. size_t& temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items OffsetsOutputIteratorT d_offsets_out, ///< [out] Pointer to the output sequence of run-offsets LengthsOutputIteratorT d_lengths_out, ///< [out] Pointer to the output sequence of run-lengths NumRunsOutputIteratorT d_num_runs_out, ///< [out] Pointer to the total number of runs encountered (i.e., length of \p d_offsets_out) EqualityOpT equality_op, ///< [in] Equality operator for input items OffsetT num_items, ///< [in] Total number of input items (i.e., length of \p d_in) cudaStream_t stream, ///< [in] CUDA stream to launch kernels within. Default is stream0. bool debug_synchronous, ///< [in] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false. int /*ptx_version*/, ///< [in] PTX version of dispatch kernels DeviceScanInitKernelPtr device_scan_init_kernel, ///< [in] Kernel function pointer to parameterization of cub::DeviceScanInitKernel DeviceRleSweepKernelPtr device_rle_sweep_kernel, ///< [in] Kernel function pointer to parameterization of cub::DeviceRleSweepKernel KernelConfig device_rle_config) ///< [in] Dispatch parameters that match the policy that \p device_rle_sweep_kernel was compiled for { #ifndef CUB_RUNTIME_ENABLED // Kernel launch not supported from this device return CubDebug(cudaErrorNotSupported); #else cudaError error = cudaSuccess; do { // Get device ordinal int device_ordinal; if (CubDebug(error = cudaGetDevice(&device_ordinal))) break; // Get SM count int sm_count; if (CubDebug(error = cudaDeviceGetAttribute (&sm_count, cudaDevAttrMultiProcessorCount, device_ordinal))) break; // Number of input tiles int tile_size = device_rle_config.block_threads * device_rle_config.items_per_thread; int num_tiles = (num_items + tile_size - 1) / tile_size; // Specify temporary storage allocation requirements size_t allocation_sizes[1]; if (CubDebug(error = ScanTileStateT::AllocationSize(num_tiles, allocation_sizes[0]))) break; // bytes needed for tile status descriptors // Compute allocation pointers into the single storage blob (or compute the necessary size of the blob) void* allocations[1] = {}; if (CubDebug(error = AliasTemporaries(d_temp_storage, temp_storage_bytes, allocations, allocation_sizes))) break; if (d_temp_storage == NULL) { // Return if the caller is simply requesting the size of the storage allocation break; } // Construct the tile status interface ScanTileStateT tile_status; if (CubDebug(error = tile_status.Init(num_tiles, allocations[0], allocation_sizes[0]))) break; // Log device_scan_init_kernel configuration int init_grid_size = CUB_MAX(1, (num_tiles + INIT_KERNEL_THREADS - 1) / INIT_KERNEL_THREADS); if (debug_synchronous) _CubLog("Invoking device_scan_init_kernel<<<%d, %d, 0, %lld>>>()\n", init_grid_size, INIT_KERNEL_THREADS, (long long) stream); // Invoke device_scan_init_kernel to initialize tile descriptors and queue descriptors thrust::cuda_cub::launcher::triple_chevron( init_grid_size, INIT_KERNEL_THREADS, 0, stream ).doit(device_scan_init_kernel, tile_status, num_tiles, d_num_runs_out); // Check for failure to launch if (CubDebug(error = cudaPeekAtLastError())) break; // Sync the stream if specified to flush runtime errors if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break; // Return if empty problem if (num_items == 0) break; // Get SM occupancy for device_rle_sweep_kernel int device_rle_kernel_sm_occupancy; if (CubDebug(error = MaxSmOccupancy( device_rle_kernel_sm_occupancy, // out device_rle_sweep_kernel, device_rle_config.block_threads))) break; // Get max x-dimension of grid int max_dim_x; if (CubDebug(error = cudaDeviceGetAttribute(&max_dim_x, cudaDevAttrMaxGridDimX, device_ordinal))) break;; // Get grid size for scanning tiles dim3 scan_grid_size; scan_grid_size.z = 1; scan_grid_size.y = ((unsigned int) num_tiles + max_dim_x - 1) / max_dim_x; scan_grid_size.x = CUB_MIN(num_tiles, max_dim_x); // Log device_rle_sweep_kernel configuration if (debug_synchronous) _CubLog("Invoking device_rle_sweep_kernel<<<{%d,%d,%d}, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy\n", scan_grid_size.x, scan_grid_size.y, scan_grid_size.z, device_rle_config.block_threads, (long long) stream, device_rle_config.items_per_thread, device_rle_kernel_sm_occupancy); // Invoke device_rle_sweep_kernel thrust::cuda_cub::launcher::triple_chevron( scan_grid_size, device_rle_config.block_threads, 0, stream ).doit(device_rle_sweep_kernel, d_in, d_offsets_out, d_lengths_out, d_num_runs_out, tile_status, equality_op, num_items, num_tiles); // Check for failure to launch if (CubDebug(error = cudaPeekAtLastError())) break; // Sync the stream if specified to flush runtime errors if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break; } while (0); return error; #endif // CUB_RUNTIME_ENABLED } /** * Internal dispatch routine */ CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t Dispatch( void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. size_t& temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation InputIteratorT d_in, ///< [in] Pointer to input sequence of data items OffsetsOutputIteratorT d_offsets_out, ///< [out] Pointer to output sequence of run-offsets LengthsOutputIteratorT d_lengths_out, ///< [out] Pointer to output sequence of run-lengths NumRunsOutputIteratorT d_num_runs_out, ///< [out] Pointer to total number of runs (i.e., length of \p d_offsets_out) EqualityOpT equality_op, ///< [in] Equality operator for input items OffsetT num_items, ///< [in] Total number of input items (i.e., length of \p d_in) cudaStream_t stream, ///< [in] [optional] CUDA stream to launch kernels within. Default is stream0. bool debug_synchronous) ///< [in] [optional] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false. { cudaError error = cudaSuccess; do { // Get PTX version int ptx_version = 0; if (CubDebug(error = PtxVersion(ptx_version))) break; // Get kernel kernel dispatch configurations KernelConfig device_rle_config; InitConfigs(ptx_version, device_rle_config); // Dispatch if (CubDebug(error = Dispatch( d_temp_storage, temp_storage_bytes, d_in, d_offsets_out, d_lengths_out, d_num_runs_out, equality_op, num_items, stream, debug_synchronous, ptx_version, DeviceCompactInitKernel, DeviceRleSweepKernel, device_rle_config))) break; } while (0); return error; } }; } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s)