/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2016, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * Operations for reading linear tiles of data into the CUDA thread block. */ #pragma once #include #include "block_exchange.cuh" #include "../iterator/cache_modified_input_iterator.cuh" #include "../config.cuh" #include "../util_ptx.cuh" #include "../util_type.cuh" /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /** * \addtogroup UtilIo * @{ */ /******************************************************************//** * \name Blocked arrangement I/O (direct) *********************************************************************/ //@{ /** * \brief Load a linear segment of items into a blocked arrangement across the thread block. * * \blocked * * \tparam T [inferred] The data type to load. * \tparam ITEMS_PER_THREAD [inferred] The number of consecutive items partitioned onto each thread. * \tparam InputIteratorT [inferred] The random-access iterator type for input \iterator. */ template < typename InputT, int ITEMS_PER_THREAD, typename InputIteratorT> __device__ __forceinline__ void LoadDirectBlocked( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., (threadIdx.y * blockDim.x) + linear_tid for 2D thread blocks) InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { // Load directly in thread-blocked order #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { items[ITEM] = block_itr[(linear_tid * ITEMS_PER_THREAD) + ITEM]; } } /** * \brief Load a linear segment of items into a blocked arrangement across the thread block, guarded by range. * * \blocked * * \tparam T [inferred] The data type to load. * \tparam ITEMS_PER_THREAD [inferred] The number of consecutive items partitioned onto each thread. * \tparam InputIteratorT [inferred] The random-access iterator type for input \iterator. */ template < typename InputT, int ITEMS_PER_THREAD, typename InputIteratorT> __device__ __forceinline__ void LoadDirectBlocked( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., (threadIdx.y * blockDim.x) + linear_tid for 2D thread blocks) InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items) ///< [in] Number of valid items to load { #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { if ((linear_tid * ITEMS_PER_THREAD) + ITEM < valid_items) { items[ITEM] = block_itr[(linear_tid * ITEMS_PER_THREAD) + ITEM]; } } } /** * \brief Load a linear segment of items into a blocked arrangement across the thread block, guarded by range, with a fall-back assignment of out-of-bound elements.. * * \blocked * * \tparam T [inferred] The data type to load. * \tparam ITEMS_PER_THREAD [inferred] The number of consecutive items partitioned onto each thread. * \tparam InputIteratorT [inferred] The random-access iterator type for input \iterator. */ template < typename InputT, typename DefaultT, int ITEMS_PER_THREAD, typename InputIteratorT> __device__ __forceinline__ void LoadDirectBlocked( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., (threadIdx.y * blockDim.x) + linear_tid for 2D thread blocks) InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items, ///< [in] Number of valid items to load DefaultT oob_default) ///< [in] Default value to assign out-of-bound items { #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) items[ITEM] = oob_default; LoadDirectBlocked(linear_tid, block_itr, items, valid_items); } #ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document /** * Internal implementation for load vectorization */ template < CacheLoadModifier MODIFIER, typename T, int ITEMS_PER_THREAD> __device__ __forceinline__ void InternalLoadDirectBlockedVectorized( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., (threadIdx.y * blockDim.x) + linear_tid for 2D thread blocks) T *block_ptr, ///< [in] Input pointer for loading from T (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { // Biggest memory access word that T is a whole multiple of typedef typename UnitWord::DeviceWord DeviceWord; enum { TOTAL_WORDS = sizeof(items) / sizeof(DeviceWord), VECTOR_SIZE = (TOTAL_WORDS % 4 == 0) ? 4 : (TOTAL_WORDS % 2 == 0) ? 2 : 1, VECTORS_PER_THREAD = TOTAL_WORDS / VECTOR_SIZE, }; // Vector type typedef typename CubVector::Type Vector; // Vector items Vector vec_items[VECTORS_PER_THREAD]; // Aliased input ptr Vector* vec_ptr = reinterpret_cast(block_ptr) + (linear_tid * VECTORS_PER_THREAD); // Load directly in thread-blocked order #pragma unroll for (int ITEM = 0; ITEM < VECTORS_PER_THREAD; ITEM++) { vec_items[ITEM] = ThreadLoad(vec_ptr + ITEM); } // Copy #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { items[ITEM] = *(reinterpret_cast(vec_items) + ITEM); } } #endif // DOXYGEN_SHOULD_SKIP_THIS /** * \brief Load a linear segment of items into a blocked arrangement across the thread block. * * \blocked * * The input offset (\p block_ptr + \p block_offset) must be quad-item aligned * * The following conditions will prevent vectorization and loading will fall back to cub::BLOCK_LOAD_DIRECT: * - \p ITEMS_PER_THREAD is odd * - The data type \p T is not a built-in primitive or CUDA vector type (e.g., \p short, \p int2, \p double, \p float2, etc.) * * \tparam T [inferred] The data type to load. * \tparam ITEMS_PER_THREAD [inferred] The number of consecutive items partitioned onto each thread. */ template < typename T, int ITEMS_PER_THREAD> __device__ __forceinline__ void LoadDirectBlockedVectorized( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., (threadIdx.y * blockDim.x) + linear_tid for 2D thread blocks) T *block_ptr, ///< [in] Input pointer for loading from T (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { InternalLoadDirectBlockedVectorized(linear_tid, block_ptr, items); } //@} end member group /******************************************************************//** * \name Striped arrangement I/O (direct) *********************************************************************/ //@{ /** * \brief Load a linear segment of items into a striped arrangement across the thread block. * * \striped * * \tparam BLOCK_THREADS The thread block size in threads * \tparam T [inferred] The data type to load. * \tparam ITEMS_PER_THREAD [inferred] The number of consecutive items partitioned onto each thread. * \tparam InputIteratorT [inferred] The random-access iterator type for input \iterator. */ template < int BLOCK_THREADS, typename InputT, int ITEMS_PER_THREAD, typename InputIteratorT> __device__ __forceinline__ void LoadDirectStriped( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., (threadIdx.y * blockDim.x) + linear_tid for 2D thread blocks) InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { items[ITEM] = block_itr[linear_tid + ITEM * BLOCK_THREADS]; } } /** * \brief Load a linear segment of items into a striped arrangement across the thread block, guarded by range * * \striped * * \tparam BLOCK_THREADS The thread block size in threads * \tparam T [inferred] The data type to load. * \tparam ITEMS_PER_THREAD [inferred] The number of consecutive items partitioned onto each thread. * \tparam InputIteratorT [inferred] The random-access iterator type for input \iterator. */ template < int BLOCK_THREADS, typename InputT, int ITEMS_PER_THREAD, typename InputIteratorT> __device__ __forceinline__ void LoadDirectStriped( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., (threadIdx.y * blockDim.x) + linear_tid for 2D thread blocks) InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items) ///< [in] Number of valid items to load { #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { if (linear_tid + (ITEM * BLOCK_THREADS) < valid_items) { items[ITEM] = block_itr[linear_tid + ITEM * BLOCK_THREADS]; } } } /** * \brief Load a linear segment of items into a striped arrangement across the thread block, guarded by range, with a fall-back assignment of out-of-bound elements. * * \striped * * \tparam BLOCK_THREADS The thread block size in threads * \tparam T [inferred] The data type to load. * \tparam ITEMS_PER_THREAD [inferred] The number of consecutive items partitioned onto each thread. * \tparam InputIteratorT [inferred] The random-access iterator type for input \iterator. */ template < int BLOCK_THREADS, typename InputT, typename DefaultT, int ITEMS_PER_THREAD, typename InputIteratorT> __device__ __forceinline__ void LoadDirectStriped( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., (threadIdx.y * blockDim.x) + linear_tid for 2D thread blocks) InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items, ///< [in] Number of valid items to load DefaultT oob_default) ///< [in] Default value to assign out-of-bound items { #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) items[ITEM] = oob_default; LoadDirectStriped(linear_tid, block_itr, items, valid_items); } //@} end member group /******************************************************************//** * \name Warp-striped arrangement I/O (direct) *********************************************************************/ //@{ /** * \brief Load a linear segment of items into a warp-striped arrangement across the thread block. * * \warpstriped * * \par Usage Considerations * The number of threads in the thread block must be a multiple of the architecture's warp size. * * \tparam T [inferred] The data type to load. * \tparam ITEMS_PER_THREAD [inferred] The number of consecutive items partitioned onto each thread. * \tparam InputIteratorT [inferred] The random-access iterator type for input \iterator. */ template < typename InputT, int ITEMS_PER_THREAD, typename InputIteratorT> __device__ __forceinline__ void LoadDirectWarpStriped( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., (threadIdx.y * blockDim.x) + linear_tid for 2D thread blocks) InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { int tid = linear_tid & (CUB_PTX_WARP_THREADS - 1); int wid = linear_tid >> CUB_PTX_LOG_WARP_THREADS; int warp_offset = wid * CUB_PTX_WARP_THREADS * ITEMS_PER_THREAD; // Load directly in warp-striped order #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { new(&items[ITEM]) InputT(block_itr[warp_offset + tid + (ITEM * CUB_PTX_WARP_THREADS)]); } } /** * \brief Load a linear segment of items into a warp-striped arrangement across the thread block, guarded by range * * \warpstriped * * \par Usage Considerations * The number of threads in the thread block must be a multiple of the architecture's warp size. * * \tparam T [inferred] The data type to load. * \tparam ITEMS_PER_THREAD [inferred] The number of consecutive items partitioned onto each thread. * \tparam InputIteratorT [inferred] The random-access iterator type for input \iterator. */ template < typename InputT, int ITEMS_PER_THREAD, typename InputIteratorT> __device__ __forceinline__ void LoadDirectWarpStriped( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., (threadIdx.y * blockDim.x) + linear_tid for 2D thread blocks) InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items) ///< [in] Number of valid items to load { int tid = linear_tid & (CUB_PTX_WARP_THREADS - 1); int wid = linear_tid >> CUB_PTX_LOG_WARP_THREADS; int warp_offset = wid * CUB_PTX_WARP_THREADS * ITEMS_PER_THREAD; // Load directly in warp-striped order #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { if (warp_offset + tid + (ITEM * CUB_PTX_WARP_THREADS) < valid_items) { new(&items[ITEM]) InputT(block_itr[warp_offset + tid + (ITEM * CUB_PTX_WARP_THREADS)]); } } } /** * \brief Load a linear segment of items into a warp-striped arrangement across the thread block, guarded by range, with a fall-back assignment of out-of-bound elements. * * \warpstriped * * \par Usage Considerations * The number of threads in the thread block must be a multiple of the architecture's warp size. * * \tparam T [inferred] The data type to load. * \tparam ITEMS_PER_THREAD [inferred] The number of consecutive items partitioned onto each thread. * \tparam InputIteratorT [inferred] The random-access iterator type for input \iterator. */ template < typename InputT, typename DefaultT, int ITEMS_PER_THREAD, typename InputIteratorT> __device__ __forceinline__ void LoadDirectWarpStriped( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., (threadIdx.y * blockDim.x) + linear_tid for 2D thread blocks) InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items, ///< [in] Number of valid items to load DefaultT oob_default) ///< [in] Default value to assign out-of-bound items { // Load directly in warp-striped order #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) items[ITEM] = oob_default; LoadDirectWarpStriped(linear_tid, block_itr, items, valid_items); } //@} end member group /** @} */ // end group UtilIo //----------------------------------------------------------------------------- // Generic BlockLoad abstraction //----------------------------------------------------------------------------- /** * \brief cub::BlockLoadAlgorithm enumerates alternative algorithms for cub::BlockLoad to read a linear segment of data from memory into a blocked arrangement across a CUDA thread block. */ /** * \brief cub::BlockLoadAlgorithm enumerates alternative algorithms for cub::BlockLoad to read a linear segment of data from memory into a blocked arrangement across a CUDA thread block. */ enum BlockLoadAlgorithm { /** * \par Overview * * A [blocked arrangement](index.html#sec5sec3) of data is read * directly from memory. * * \par Performance Considerations * - The utilization of memory transactions (coalescing) decreases as the * access stride between threads increases (i.e., the number items per thread). */ BLOCK_LOAD_DIRECT, /** * \par Overview * * A [blocked arrangement](index.html#sec5sec3) of data is read * from memory using CUDA's built-in vectorized loads as a coalescing optimization. * For example, ld.global.v4.s32 instructions will be generated * when \p T = \p int and \p ITEMS_PER_THREAD % 4 == 0. * * \par Performance Considerations * - The utilization of memory transactions (coalescing) remains high until the the * access stride between threads (i.e., the number items per thread) exceeds the * maximum vector load width (typically 4 items or 64B, whichever is lower). * - The following conditions will prevent vectorization and loading will fall back to cub::BLOCK_LOAD_DIRECT: * - \p ITEMS_PER_THREAD is odd * - The \p InputIteratorTis not a simple pointer type * - The block input offset is not quadword-aligned * - The data type \p T is not a built-in primitive or CUDA vector type (e.g., \p short, \p int2, \p double, \p float2, etc.) */ BLOCK_LOAD_VECTORIZE, /** * \par Overview * * A [striped arrangement](index.html#sec5sec3) of data is read * efficiently from memory and then locally transposed into a * [blocked arrangement](index.html#sec5sec3). * * \par Performance Considerations * - The utilization of memory transactions (coalescing) remains high regardless * of items loaded per thread. * - The local reordering incurs slightly longer latencies and throughput than the * direct cub::BLOCK_LOAD_DIRECT and cub::BLOCK_LOAD_VECTORIZE alternatives. */ BLOCK_LOAD_TRANSPOSE, /** * \par Overview * * A [warp-striped arrangement](index.html#sec5sec3) of data is * read efficiently from memory and then locally transposed into a * [blocked arrangement](index.html#sec5sec3). * * \par Usage Considerations * - BLOCK_THREADS must be a multiple of WARP_THREADS * * \par Performance Considerations * - The utilization of memory transactions (coalescing) remains high regardless * of items loaded per thread. * - The local reordering incurs slightly larger latencies than the * direct cub::BLOCK_LOAD_DIRECT and cub::BLOCK_LOAD_VECTORIZE alternatives. * - Provisions more shared storage, but incurs smaller latencies than the * BLOCK_LOAD_WARP_TRANSPOSE_TIMESLICED alternative. */ BLOCK_LOAD_WARP_TRANSPOSE, /** * \par Overview * * Like \p BLOCK_LOAD_WARP_TRANSPOSE, a [warp-striped arrangement](index.html#sec5sec3) * of data is read directly from memory and then is locally transposed into a * [blocked arrangement](index.html#sec5sec3). To reduce the shared memory * requirement, only one warp's worth of shared memory is provisioned and is * subsequently time-sliced among warps. * * \par Usage Considerations * - BLOCK_THREADS must be a multiple of WARP_THREADS * * \par Performance Considerations * - The utilization of memory transactions (coalescing) remains high regardless * of items loaded per thread. * - Provisions less shared memory temporary storage, but incurs larger * latencies than the BLOCK_LOAD_WARP_TRANSPOSE alternative. */ BLOCK_LOAD_WARP_TRANSPOSE_TIMESLICED, }; /** * \brief The BlockLoad class provides [collective](index.html#sec0) data movement methods for loading a linear segment of items from memory into a [blocked arrangement](index.html#sec5sec3) across a CUDA thread block. ![](block_load_logo.png) * \ingroup BlockModule * \ingroup UtilIo * * \tparam InputT The data type to read into (which must be convertible from the input iterator's value type). * \tparam BLOCK_DIM_X The thread block length in threads along the X dimension * \tparam ITEMS_PER_THREAD The number of consecutive items partitioned onto each thread. * \tparam ALGORITHM [optional] cub::BlockLoadAlgorithm tuning policy. default: cub::BLOCK_LOAD_DIRECT. * \tparam WARP_TIME_SLICING [optional] Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage). (default: false) * \tparam BLOCK_DIM_Y [optional] The thread block length in threads along the Y dimension (default: 1) * \tparam BLOCK_DIM_Z [optional] The thread block length in threads along the Z dimension (default: 1) * \tparam PTX_ARCH [optional] \ptxversion * * \par Overview * - The BlockLoad class provides a single data movement abstraction that can be specialized * to implement different cub::BlockLoadAlgorithm strategies. This facilitates different * performance policies for different architectures, data types, granularity sizes, etc. * - BlockLoad can be optionally specialized by different data movement strategies: * -# cub::BLOCK_LOAD_DIRECT. A [blocked arrangement](index.html#sec5sec3) * of data is read directly from memory. [More...](\ref cub::BlockLoadAlgorithm) * -# cub::BLOCK_LOAD_VECTORIZE. A [blocked arrangement](index.html#sec5sec3) * of data is read directly from memory using CUDA's built-in vectorized loads as a * coalescing optimization. [More...](\ref cub::BlockLoadAlgorithm) * -# cub::BLOCK_LOAD_TRANSPOSE. A [striped arrangement](index.html#sec5sec3) * of data is read directly from memory and is then locally transposed into a * [blocked arrangement](index.html#sec5sec3). [More...](\ref cub::BlockLoadAlgorithm) * -# cub::BLOCK_LOAD_WARP_TRANSPOSE. A [warp-striped arrangement](index.html#sec5sec3) * of data is read directly from memory and is then locally transposed into a * [blocked arrangement](index.html#sec5sec3). [More...](\ref cub::BlockLoadAlgorithm) * -# cub::BLOCK_LOAD_WARP_TRANSPOSE_TIMESLICED,. A [warp-striped arrangement](index.html#sec5sec3) * of data is read directly from memory and is then locally transposed into a * [blocked arrangement](index.html#sec5sec3) one warp at a time. [More...](\ref cub::BlockLoadAlgorithm) * - \rowmajor * * \par A Simple Example * \blockcollective{BlockLoad} * \par * The code snippet below illustrates the loading of a linear * segment of 512 integers into a "blocked" arrangement across 128 threads where each * thread owns 4 consecutive items. The load is specialized for \p BLOCK_LOAD_WARP_TRANSPOSE, * meaning memory references are efficiently coalesced using a warp-striped access * pattern (after which items are locally reordered among threads). * \par * \code * #include // or equivalently * * __global__ void ExampleKernel(int *d_data, ...) * { * // Specialize BlockLoad for a 1D block of 128 threads owning 4 integer items each * typedef cub::BlockLoad BlockLoad; * * // Allocate shared memory for BlockLoad * __shared__ typename BlockLoad::TempStorage temp_storage; * * // Load a segment of consecutive items that are blocked across threads * int thread_data[4]; * BlockLoad(temp_storage).Load(d_data, thread_data); * * \endcode * \par * Suppose the input \p d_data is 0, 1, 2, 3, 4, 5, .... * The set of \p thread_data across the block of threads in those threads will be * { [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }. * */ template < typename InputT, int BLOCK_DIM_X, int ITEMS_PER_THREAD, BlockLoadAlgorithm ALGORITHM = BLOCK_LOAD_DIRECT, int BLOCK_DIM_Y = 1, int BLOCK_DIM_Z = 1, int PTX_ARCH = CUB_PTX_ARCH> class BlockLoad { private: /****************************************************************************** * Constants and typed definitions ******************************************************************************/ /// Constants enum { /// The thread block size in threads BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z, }; /****************************************************************************** * Algorithmic variants ******************************************************************************/ /// Load helper template struct LoadInternal; /** * BLOCK_LOAD_DIRECT specialization of load helper */ template struct LoadInternal { /// Shared memory storage layout type typedef NullType TempStorage; /// Linear thread-id int linear_tid; /// Constructor __device__ __forceinline__ LoadInternal( TempStorage &/*temp_storage*/, int linear_tid) : linear_tid(linear_tid) {} /// Load a linear segment of items from memory template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { LoadDirectBlocked(linear_tid, block_itr, items); } /// Load a linear segment of items from memory, guarded by range template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items) ///< [in] Number of valid items to load { LoadDirectBlocked(linear_tid, block_itr, items, valid_items); } /// Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items, ///< [in] Number of valid items to load DefaultT oob_default) ///< [in] Default value to assign out-of-bound items { LoadDirectBlocked(linear_tid, block_itr, items, valid_items, oob_default); } }; /** * BLOCK_LOAD_VECTORIZE specialization of load helper */ template struct LoadInternal { /// Shared memory storage layout type typedef NullType TempStorage; /// Linear thread-id int linear_tid; /// Constructor __device__ __forceinline__ LoadInternal( TempStorage &/*temp_storage*/, int linear_tid) : linear_tid(linear_tid) {} /// Load a linear segment of items from memory, specialized for native pointer types (attempts vectorization) template __device__ __forceinline__ void Load( InputT *block_ptr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { InternalLoadDirectBlockedVectorized(linear_tid, block_ptr, items); } /// Load a linear segment of items from memory, specialized for native pointer types (attempts vectorization) template __device__ __forceinline__ void Load( const InputT *block_ptr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { InternalLoadDirectBlockedVectorized(linear_tid, block_ptr, items); } /// Load a linear segment of items from memory, specialized for native pointer types (attempts vectorization) template < CacheLoadModifier MODIFIER, typename ValueType, typename OffsetT> __device__ __forceinline__ void Load( CacheModifiedInputIterator block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { InternalLoadDirectBlockedVectorized(linear_tid, block_itr.ptr, items); } /// Load a linear segment of items from memory, specialized for opaque input iterators (skips vectorization) template __device__ __forceinline__ void Load( _InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { LoadDirectBlocked(linear_tid, block_itr, items); } /// Load a linear segment of items from memory, guarded by range (skips vectorization) template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items) ///< [in] Number of valid items to load { LoadDirectBlocked(linear_tid, block_itr, items, valid_items); } /// Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements (skips vectorization) template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items, ///< [in] Number of valid items to load DefaultT oob_default) ///< [in] Default value to assign out-of-bound items { LoadDirectBlocked(linear_tid, block_itr, items, valid_items, oob_default); } }; /** * BLOCK_LOAD_TRANSPOSE specialization of load helper */ template struct LoadInternal { // BlockExchange utility type for keys typedef BlockExchange BlockExchange; /// Shared memory storage layout type struct _TempStorage : BlockExchange::TempStorage {}; /// Alias wrapper allowing storage to be unioned struct TempStorage : Uninitialized<_TempStorage> {}; /// Thread reference to shared storage _TempStorage &temp_storage; /// Linear thread-id int linear_tid; /// Constructor __device__ __forceinline__ LoadInternal( TempStorage &temp_storage, int linear_tid) : temp_storage(temp_storage.Alias()), linear_tid(linear_tid) {} /// Load a linear segment of items from memory template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load{ { LoadDirectStriped(linear_tid, block_itr, items); BlockExchange(temp_storage).StripedToBlocked(items, items); } /// Load a linear segment of items from memory, guarded by range template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items) ///< [in] Number of valid items to load { LoadDirectStriped(linear_tid, block_itr, items, valid_items); BlockExchange(temp_storage).StripedToBlocked(items, items); } /// Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items, ///< [in] Number of valid items to load DefaultT oob_default) ///< [in] Default value to assign out-of-bound items { LoadDirectStriped(linear_tid, block_itr, items, valid_items, oob_default); BlockExchange(temp_storage).StripedToBlocked(items, items); } }; /** * BLOCK_LOAD_WARP_TRANSPOSE specialization of load helper */ template struct LoadInternal { enum { WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH) }; // Assert BLOCK_THREADS must be a multiple of WARP_THREADS CUB_STATIC_ASSERT((BLOCK_THREADS % WARP_THREADS == 0), "BLOCK_THREADS must be a multiple of WARP_THREADS"); // BlockExchange utility type for keys typedef BlockExchange BlockExchange; /// Shared memory storage layout type struct _TempStorage : BlockExchange::TempStorage {}; /// Alias wrapper allowing storage to be unioned struct TempStorage : Uninitialized<_TempStorage> {}; /// Thread reference to shared storage _TempStorage &temp_storage; /// Linear thread-id int linear_tid; /// Constructor __device__ __forceinline__ LoadInternal( TempStorage &temp_storage, int linear_tid) : temp_storage(temp_storage.Alias()), linear_tid(linear_tid) {} /// Load a linear segment of items from memory template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load{ { LoadDirectWarpStriped(linear_tid, block_itr, items); BlockExchange(temp_storage).WarpStripedToBlocked(items, items); } /// Load a linear segment of items from memory, guarded by range template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items) ///< [in] Number of valid items to load { LoadDirectWarpStriped(linear_tid, block_itr, items, valid_items); BlockExchange(temp_storage).WarpStripedToBlocked(items, items); } /// Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items, ///< [in] Number of valid items to load DefaultT oob_default) ///< [in] Default value to assign out-of-bound items { LoadDirectWarpStriped(linear_tid, block_itr, items, valid_items, oob_default); BlockExchange(temp_storage).WarpStripedToBlocked(items, items); } }; /** * BLOCK_LOAD_WARP_TRANSPOSE_TIMESLICED specialization of load helper */ template struct LoadInternal { enum { WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH) }; // Assert BLOCK_THREADS must be a multiple of WARP_THREADS CUB_STATIC_ASSERT((BLOCK_THREADS % WARP_THREADS == 0), "BLOCK_THREADS must be a multiple of WARP_THREADS"); // BlockExchange utility type for keys typedef BlockExchange BlockExchange; /// Shared memory storage layout type struct _TempStorage : BlockExchange::TempStorage {}; /// Alias wrapper allowing storage to be unioned struct TempStorage : Uninitialized<_TempStorage> {}; /// Thread reference to shared storage _TempStorage &temp_storage; /// Linear thread-id int linear_tid; /// Constructor __device__ __forceinline__ LoadInternal( TempStorage &temp_storage, int linear_tid) : temp_storage(temp_storage.Alias()), linear_tid(linear_tid) {} /// Load a linear segment of items from memory template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load{ { LoadDirectWarpStriped(linear_tid, block_itr, items); BlockExchange(temp_storage).WarpStripedToBlocked(items, items); } /// Load a linear segment of items from memory, guarded by range template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items) ///< [in] Number of valid items to load { LoadDirectWarpStriped(linear_tid, block_itr, items, valid_items); BlockExchange(temp_storage).WarpStripedToBlocked(items, items); } /// Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items, ///< [in] Number of valid items to load DefaultT oob_default) ///< [in] Default value to assign out-of-bound items { LoadDirectWarpStriped(linear_tid, block_itr, items, valid_items, oob_default); BlockExchange(temp_storage).WarpStripedToBlocked(items, items); } }; /****************************************************************************** * Type definitions ******************************************************************************/ /// Internal load implementation to use typedef LoadInternal InternalLoad; /// Shared memory storage layout type typedef typename InternalLoad::TempStorage _TempStorage; /****************************************************************************** * Utility methods ******************************************************************************/ /// Internal storage allocator __device__ __forceinline__ _TempStorage& PrivateStorage() { __shared__ _TempStorage private_storage; return private_storage; } /****************************************************************************** * Thread fields ******************************************************************************/ /// Thread reference to shared storage _TempStorage &temp_storage; /// Linear thread-id int linear_tid; public: /// \smemstorage{BlockLoad} struct TempStorage : Uninitialized<_TempStorage> {}; /******************************************************************//** * \name Collective constructors *********************************************************************/ //@{ /** * \brief Collective constructor using a private static allocation of shared memory as temporary storage. */ __device__ __forceinline__ BlockLoad() : temp_storage(PrivateStorage()), linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z)) {} /** * \brief Collective constructor using the specified memory allocation as temporary storage. */ __device__ __forceinline__ BlockLoad( TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage : temp_storage(temp_storage.Alias()), linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z)) {} //@} end member group /******************************************************************//** * \name Data movement *********************************************************************/ //@{ /** * \brief Load a linear segment of items from memory. * * \par * - \blocked * - \smemreuse * * \par Snippet * The code snippet below illustrates the loading of a linear * segment of 512 integers into a "blocked" arrangement across 128 threads where each * thread owns 4 consecutive items. The load is specialized for \p BLOCK_LOAD_WARP_TRANSPOSE, * meaning memory references are efficiently coalesced using a warp-striped access * pattern (after which items are locally reordered among threads). * \par * \code * #include // or equivalently * * __global__ void ExampleKernel(int *d_data, ...) * { * // Specialize BlockLoad for a 1D block of 128 threads owning 4 integer items each * typedef cub::BlockLoad BlockLoad; * * // Allocate shared memory for BlockLoad * __shared__ typename BlockLoad::TempStorage temp_storage; * * // Load a segment of consecutive items that are blocked across threads * int thread_data[4]; * BlockLoad(temp_storage).Load(d_data, thread_data); * * \endcode * \par * Suppose the input \p d_data is 0, 1, 2, 3, 4, 5, .... * The set of \p thread_data across the block of threads in those threads will be * { [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }. * */ template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { InternalLoad(temp_storage, linear_tid).Load(block_itr, items); } /** * \brief Load a linear segment of items from memory, guarded by range. * * \par * - \blocked * - \smemreuse * * \par Snippet * The code snippet below illustrates the guarded loading of a linear * segment of 512 integers into a "blocked" arrangement across 128 threads where each * thread owns 4 consecutive items. The load is specialized for \p BLOCK_LOAD_WARP_TRANSPOSE, * meaning memory references are efficiently coalesced using a warp-striped access * pattern (after which items are locally reordered among threads). * \par * \code * #include // or equivalently * * __global__ void ExampleKernel(int *d_data, int valid_items, ...) * { * // Specialize BlockLoad for a 1D block of 128 threads owning 4 integer items each * typedef cub::BlockLoad BlockLoad; * * // Allocate shared memory for BlockLoad * __shared__ typename BlockLoad::TempStorage temp_storage; * * // Load a segment of consecutive items that are blocked across threads * int thread_data[4]; * BlockLoad(temp_storage).Load(d_data, thread_data, valid_items); * * \endcode * \par * Suppose the input \p d_data is 0, 1, 2, 3, 4, 5, 6... and \p valid_items is \p 5. * The set of \p thread_data across the block of threads in those threads will be * { [0,1,2,3], [4,?,?,?], ..., [?,?,?,?] }, with only the first two threads * being unmasked to load portions of valid data (and other items remaining unassigned). * */ template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items) ///< [in] Number of valid items to load { InternalLoad(temp_storage, linear_tid).Load(block_itr, items, valid_items); } /** * \brief Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements * * \par * - \blocked * - \smemreuse * * \par Snippet * The code snippet below illustrates the guarded loading of a linear * segment of 512 integers into a "blocked" arrangement across 128 threads where each * thread owns 4 consecutive items. The load is specialized for \p BLOCK_LOAD_WARP_TRANSPOSE, * meaning memory references are efficiently coalesced using a warp-striped access * pattern (after which items are locally reordered among threads). * \par * \code * #include // or equivalently * * __global__ void ExampleKernel(int *d_data, int valid_items, ...) * { * // Specialize BlockLoad for a 1D block of 128 threads owning 4 integer items each * typedef cub::BlockLoad BlockLoad; * * // Allocate shared memory for BlockLoad * __shared__ typename BlockLoad::TempStorage temp_storage; * * // Load a segment of consecutive items that are blocked across threads * int thread_data[4]; * BlockLoad(temp_storage).Load(d_data, thread_data, valid_items, -1); * * \endcode * \par * Suppose the input \p d_data is 0, 1, 2, 3, 4, 5, 6..., * \p valid_items is \p 5, and the out-of-bounds default is \p -1. * The set of \p thread_data across the block of threads in those threads will be * { [0,1,2,3], [4,-1,-1,-1], ..., [-1,-1,-1,-1] }, with only the first two threads * being unmasked to load portions of valid data (and other items are assigned \p -1) * */ template __device__ __forceinline__ void Load( InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load int valid_items, ///< [in] Number of valid items to load DefaultT oob_default) ///< [in] Default value to assign out-of-bound items { InternalLoad(temp_storage, linear_tid).Load(block_itr, items, valid_items, oob_default); } //@} end member group }; } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s)