Xu Ma commited on
Commit
434282c
·
1 Parent(s): e792874

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -59
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import argparse
2
  import csv
3
  import sys
 
4
  from pathlib import Path
5
 
6
  import gradio as gr
@@ -142,6 +143,7 @@ run_cmd("ls")
142
  run_cmd("git submodule update --init --recursive")
143
  run_cmd("python setup.py install --user")
144
  run_cmd("ls")
 
145
 
146
 
147
 
@@ -171,27 +173,6 @@ def yaml_csv(file_path, file_tag):
171
 
172
  def main(args):
173
  gr.close_all()
174
-
175
- global model
176
-
177
- slider_step = 0.05 # 滑动步长
178
-
179
- nms_conf = args.nms_conf
180
- nms_iou = args.nms_iou
181
- label_opt = args.label_dnt_show
182
- model_name = args.model_name
183
- model_cfg = args.model_cfg
184
- cls_name = args.cls_name
185
- device = args.device
186
- inference_size = args.inference_size
187
-
188
- # 模型加载
189
- model = model_loading(model_name, device)
190
-
191
- model_names = yaml_csv(model_cfg, "model_names")
192
- model_cls_name = yaml_csv(cls_name, "model_cls_name")
193
-
194
-
195
  # -------------------Inputs-------------------
196
  inputs_img = gr.inputs.Image(type="pil", label="Input Image")
197
  experiment_id = gr.inputs.Radio(
@@ -202,52 +183,21 @@ def main(args):
202
  "add [1,2,4,8,16,32, ...] total 256 paths"], type="value", default="add [1,1,1,1,1] paths", label="Path Adding Scheduler"
203
  )
204
 
205
-
206
-
207
-
208
-
209
- device = gr.inputs.Dropdown(
210
- choices=["cpu"], default=device, type="value", label="设备"
211
- )
212
- inputs_model = gr.inputs.Dropdown(
213
- choices=model_names, default=model_name, type="value", label="模型"
214
- )
215
- inputs_size = gr.inputs.Radio(
216
- choices=[320, 640], default=inference_size, label="推理尺寸"
217
- )
218
- input_conf = gr.inputs.Slider(
219
- 0, 1, step=slider_step, default=nms_conf, label="置信度阈值"
220
- )
221
- inputs_iou = gr.inputs.Slider(
222
- 0, 1, step=slider_step, default=nms_iou, label="IoU 阈值"
223
- )
224
- inputs_label = gr.inputs.Checkbox(default=label_opt, label="标签显示")
225
- inputs_clsName = gr.inputs.CheckboxGroup(
226
- choices=model_cls_name, default=model_cls_name, type="index", label="类别"
227
- )
228
-
229
- # 输入参数
230
  inputs = [
231
- inputs_img, # 输入图片
232
  experiment_id, # path adding scheduler
233
- # device, # 设备
234
- # inputs_model, # 模型
235
- # inputs_size, # 推理尺寸
236
- # input_conf, # 置信度阈值
237
- # inputs_iou, # IoU阈值
238
- # inputs_label, # 标签显示
239
- # inputs_clsName, # 类别
240
  ]
241
- # 输出参数
242
  outputs = gr.outputs.Image(type="pil", label="检测图片")
243
  outputs02 = gr.outputs.JSON(label="检测信息")
244
 
245
- # 标题
246
  title = "LIVE: Towards Layer-wise Image Vectorization"
247
- # 描述
248
  description = "<div align='center'>(CVPR 2022 Oral Presentation)</div>"
249
 
250
- # 示例图片
251
  examples = [
252
  [
253
  "./examples/1.png",
@@ -271,7 +221,7 @@ def main(args):
271
  ],
272
  ]
273
 
274
- # 接口
275
  gr.Interface(
276
  fn=yolo_det,
277
  inputs=inputs,
 
1
  import argparse
2
  import csv
3
  import sys
4
+ sys.path.append("./LIVE")
5
  from pathlib import Path
6
 
7
  import gradio as gr
 
143
  run_cmd("git submodule update --init --recursive")
144
  run_cmd("python setup.py install --user")
145
  run_cmd("ls")
146
+ run_cmd("python main.py --config config/base.yaml --experiment experiment_5x1 --signature smile --target figures/smile.png --log_dir log/")
147
 
148
 
149
 
 
173
 
174
  def main(args):
175
  gr.close_all()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
  # -------------------Inputs-------------------
177
  inputs_img = gr.inputs.Image(type="pil", label="Input Image")
178
  experiment_id = gr.inputs.Radio(
 
183
  "add [1,2,4,8,16,32, ...] total 256 paths"], type="value", default="add [1,1,1,1,1] paths", label="Path Adding Scheduler"
184
  )
185
 
186
+ # inputs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187
  inputs = [
188
+ inputs_img, # input image
189
  experiment_id, # path adding scheduler
 
 
 
 
 
 
 
190
  ]
191
+ # outputs
192
  outputs = gr.outputs.Image(type="pil", label="检测图片")
193
  outputs02 = gr.outputs.JSON(label="检测信息")
194
 
195
+ # title
196
  title = "LIVE: Towards Layer-wise Image Vectorization"
197
+ # description
198
  description = "<div align='center'>(CVPR 2022 Oral Presentation)</div>"
199
 
200
+ # examples
201
  examples = [
202
  [
203
  "./examples/1.png",
 
221
  ],
222
  ]
223
 
224
+ # Interface
225
  gr.Interface(
226
  fn=yolo_det,
227
  inputs=inputs,