LIVE / thrust /cub /block /block_scan.cuh
Xu Ma
update
1c3c0d9
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* The cub::BlockScan class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel prefix sum/scan of items partitioned across a CUDA thread block.
*/
#pragma once
#include "specializations/block_scan_raking.cuh"
#include "specializations/block_scan_warp_scans.cuh"
#include "../config.cuh"
#include "../util_type.cuh"
#include "../util_ptx.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/******************************************************************************
* Algorithmic variants
******************************************************************************/
/**
* \brief BlockScanAlgorithm enumerates alternative algorithms for cub::BlockScan to compute a parallel prefix scan across a CUDA thread block.
*/
enum BlockScanAlgorithm
{
/**
* \par Overview
* An efficient "raking reduce-then-scan" prefix scan algorithm. Execution is comprised of five phases:
* -# Upsweep sequential reduction in registers (if threads contribute more than one input each). Each thread then places the partial reduction of its item(s) into shared memory.
* -# Upsweep sequential reduction in shared memory. Threads within a single warp rake across segments of shared partial reductions.
* -# A warp-synchronous Kogge-Stone style exclusive scan within the raking warp.
* -# Downsweep sequential exclusive scan in shared memory. Threads within a single warp rake across segments of shared partial reductions, seeded with the warp-scan output.
* -# Downsweep sequential scan in registers (if threads contribute more than one input), seeded with the raking scan output.
*
* \par
* \image html block_scan_raking.png
* <div class="centercaption">\p BLOCK_SCAN_RAKING data flow for a hypothetical 16-thread thread block and 4-thread raking warp.</div>
*
* \par Performance Considerations
* - Although this variant may suffer longer turnaround latencies when the
* GPU is under-occupied, it can often provide higher overall throughput
* across the GPU when suitably occupied.
*/
BLOCK_SCAN_RAKING,
/**
* \par Overview
* Similar to cub::BLOCK_SCAN_RAKING, but with fewer shared memory reads at
* the expense of higher register pressure. Raking threads preserve their
* "upsweep" segment of values in registers while performing warp-synchronous
* scan, allowing the "downsweep" not to re-read them from shared memory.
*/
BLOCK_SCAN_RAKING_MEMOIZE,
/**
* \par Overview
* A quick "tiled warpscans" prefix scan algorithm. Execution is comprised of four phases:
* -# Upsweep sequential reduction in registers (if threads contribute more than one input each). Each thread then places the partial reduction of its item(s) into shared memory.
* -# Compute a shallow, but inefficient warp-synchronous Kogge-Stone style scan within each warp.
* -# A propagation phase where the warp scan outputs in each warp are updated with the aggregate from each preceding warp.
* -# Downsweep sequential scan in registers (if threads contribute more than one input), seeded with the raking scan output.
*
* \par
* \image html block_scan_warpscans.png
* <div class="centercaption">\p BLOCK_SCAN_WARP_SCANS data flow for a hypothetical 16-thread thread block and 4-thread raking warp.</div>
*
* \par Performance Considerations
* - Although this variant may suffer lower overall throughput across the
* GPU because due to a heavy reliance on inefficient warpscans, it can
* often provide lower turnaround latencies when the GPU is under-occupied.
*/
BLOCK_SCAN_WARP_SCANS,
};
/******************************************************************************
* Block scan
******************************************************************************/
/**
* \brief The BlockScan class provides [<em>collective</em>](index.html#sec0) methods for computing a parallel prefix sum/scan of items partitioned across a CUDA thread block. ![](block_scan_logo.png)
* \ingroup BlockModule
*
* \tparam T Data type being scanned
* \tparam BLOCK_DIM_X The thread block length in threads along the X dimension
* \tparam ALGORITHM <b>[optional]</b> cub::BlockScanAlgorithm enumerator specifying the underlying algorithm to use (default: cub::BLOCK_SCAN_RAKING)
* \tparam BLOCK_DIM_Y <b>[optional]</b> The thread block length in threads along the Y dimension (default: 1)
* \tparam BLOCK_DIM_Z <b>[optional]</b> The thread block length in threads along the Z dimension (default: 1)
* \tparam PTX_ARCH <b>[optional]</b> \ptxversion
*
* \par Overview
* - Given a list of input elements and a binary reduction operator, a [<em>prefix scan</em>](http://en.wikipedia.org/wiki/Prefix_sum)
* produces an output list where each element is computed to be the reduction
* of the elements occurring earlier in the input list. <em>Prefix sum</em>
* connotes a prefix scan with the addition operator. The term \em inclusive indicates
* that the <em>i</em><sup>th</sup> output reduction incorporates the <em>i</em><sup>th</sup> input.
* The term \em exclusive indicates the <em>i</em><sup>th</sup> input is not incorporated into
* the <em>i</em><sup>th</sup> output reduction.
* - \rowmajor
* - BlockScan can be optionally specialized by algorithm to accommodate different workload profiles:
* -# <b>cub::BLOCK_SCAN_RAKING</b>. An efficient (high throughput) "raking reduce-then-scan" prefix scan algorithm. [More...](\ref cub::BlockScanAlgorithm)
* -# <b>cub::BLOCK_SCAN_RAKING_MEMOIZE</b>. Similar to cub::BLOCK_SCAN_RAKING, but having higher throughput at the expense of additional register pressure for intermediate storage. [More...](\ref cub::BlockScanAlgorithm)
* -# <b>cub::BLOCK_SCAN_WARP_SCANS</b>. A quick (low latency) "tiled warpscans" prefix scan algorithm. [More...](\ref cub::BlockScanAlgorithm)
*
* \par Performance Considerations
* - \granularity
* - Uses special instructions when applicable (e.g., warp \p SHFL)
* - Uses synchronization-free communication between warp lanes when applicable
* - Invokes a minimal number of minimal block-wide synchronization barriers (only
* one or two depending on algorithm selection)
* - Incurs zero bank conflicts for most types
* - Computation is slightly more efficient (i.e., having lower instruction overhead) for:
* - Prefix sum variants (<b><em>vs.</em></b> generic scan)
* - \blocksize
* - See cub::BlockScanAlgorithm for performance details regarding algorithmic alternatives
*
* \par A Simple Example
* \blockcollective{BlockScan}
* \par
* The code snippet below illustrates an exclusive prefix sum of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Collectively compute the block-wide exclusive prefix sum
* BlockScan(temp_storage).ExclusiveSum(thread_data, thread_data);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is
* <tt>{[1,1,1,1], [1,1,1,1], ..., [1,1,1,1]}</tt>.
* The corresponding output \p thread_data in those threads will be
* <tt>{[0,1,2,3], [4,5,6,7], ..., [508,509,510,511]}</tt>.
*
*/
template <
typename T,
int BLOCK_DIM_X,
BlockScanAlgorithm ALGORITHM = BLOCK_SCAN_RAKING,
int BLOCK_DIM_Y = 1,
int BLOCK_DIM_Z = 1,
int PTX_ARCH = CUB_PTX_ARCH>
class BlockScan
{
private:
/******************************************************************************
* Constants and type definitions
******************************************************************************/
/// Constants
enum
{
/// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
};
/**
* Ensure the template parameterization meets the requirements of the
* specified algorithm. Currently, the BLOCK_SCAN_WARP_SCANS policy
* cannot be used with thread block sizes not a multiple of the
* architectural warp size.
*/
static const BlockScanAlgorithm SAFE_ALGORITHM =
((ALGORITHM == BLOCK_SCAN_WARP_SCANS) && (BLOCK_THREADS % CUB_WARP_THREADS(PTX_ARCH) != 0)) ?
BLOCK_SCAN_RAKING :
ALGORITHM;
typedef BlockScanWarpScans<T, BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> WarpScans;
typedef BlockScanRaking<T, BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z, (SAFE_ALGORITHM == BLOCK_SCAN_RAKING_MEMOIZE), PTX_ARCH> Raking;
/// Define the delegate type for the desired algorithm
typedef typename If<(SAFE_ALGORITHM == BLOCK_SCAN_WARP_SCANS),
WarpScans,
Raking>::Type InternalBlockScan;
/// Shared memory storage layout type for BlockScan
typedef typename InternalBlockScan::TempStorage _TempStorage;
/******************************************************************************
* Thread fields
******************************************************************************/
/// Shared storage reference
_TempStorage &temp_storage;
/// Linear thread-id
unsigned int linear_tid;
/******************************************************************************
* Utility methods
******************************************************************************/
/// Internal storage allocator
__device__ __forceinline__ _TempStorage& PrivateStorage()
{
__shared__ _TempStorage private_storage;
return private_storage;
}
/******************************************************************************
* Public types
******************************************************************************/
public:
/// \smemstorage{BlockScan}
struct TempStorage : Uninitialized<_TempStorage> {};
/******************************************************************//**
* \name Collective constructors
*********************************************************************/
//@{
/**
* \brief Collective constructor using a private static allocation of shared memory as temporary storage.
*/
__device__ __forceinline__ BlockScan()
:
temp_storage(PrivateStorage()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
/**
* \brief Collective constructor using the specified memory allocation as temporary storage.
*/
__device__ __forceinline__ BlockScan(
TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
//@} end member group
/******************************************************************//**
* \name Exclusive prefix sum operations
*********************************************************************/
//@{
/**
* \brief Computes an exclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes one input element. The value of 0 is applied as the initial value, and is assigned to \p output in <em>thread</em><sub>0</sub>.
*
* \par
* - \identityzero
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an exclusive prefix sum of 128 integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain input item for each thread
* int thread_data;
* ...
*
* // Collectively compute the block-wide exclusive prefix sum
* BlockScan(temp_storage).ExclusiveSum(thread_data, thread_data);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>1, 1, ..., 1</tt>. The
* corresponding output \p thread_data in those threads will be <tt>0, 1, ..., 127</tt>.
*
*/
__device__ __forceinline__ void ExclusiveSum(
T input, ///< [in] Calling thread's input item
T &output) ///< [out] Calling thread's output item (may be aliased to \p input)
{
#if CUB_CPP_DIALECT < 2011 // T must be able to be initialized from 0 pre-c++11
T initial_value = 0;
#else
T initial_value{};
#endif
ExclusiveScan(input, output, initial_value, cub::Sum());
}
/**
* \brief Computes an exclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes one input element. The value of 0 is applied as the initial value, and is assigned to \p output in <em>thread</em><sub>0</sub>. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - \identityzero
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an exclusive prefix sum of 128 integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain input item for each thread
* int thread_data;
* ...
*
* // Collectively compute the block-wide exclusive prefix sum
* int block_aggregate;
* BlockScan(temp_storage).ExclusiveSum(thread_data, thread_data, block_aggregate);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>1, 1, ..., 1</tt>. The
* corresponding output \p thread_data in those threads will be <tt>0, 1, ..., 127</tt>.
* Furthermore the value \p 128 will be stored in \p block_aggregate for all threads.
*
*/
__device__ __forceinline__ void ExclusiveSum(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
T &block_aggregate) ///< [out] block-wide aggregate reduction of input items
{
#if CUB_CPP_DIALECT < 2011 // T must be able to be initialized from 0 pre-c++11
T initial_value = 0;
#else
T initial_value{};
#endif
ExclusiveScan(input, output, initial_value, cub::Sum(), block_aggregate);
}
/**
* \brief Computes an exclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes one input element. Instead of using 0 as the block-wide prefix, the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - \identityzero
* - The \p block_prefix_callback_op functor must implement a member function <tt>T operator()(T block_aggregate)</tt>.
* The functor's input parameter \p block_aggregate is the same value also returned by the scan operation.
* The functor will be invoked by the first warp of threads in the block, however only the return value from
* <em>lane</em><sub>0</sub> is applied as the block-wide prefix. Can be stateful.
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a single thread block that progressively
* computes an exclusive prefix sum over multiple "tiles" of input using a
* prefix functor to maintain a running total between block-wide scans. Each tile consists
* of 128 integer items that are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* // A stateful callback functor that maintains a running prefix to be applied
* // during consecutive scan operations.
* struct BlockPrefixCallbackOp
* {
* // Running prefix
* int running_total;
*
* // Constructor
* __device__ BlockPrefixCallbackOp(int running_total) : running_total(running_total) {}
*
* // Callback operator to be entered by the first warp of threads in the block.
* // Thread-0 is responsible for returning a value for seeding the block-wide scan.
* __device__ int operator()(int block_aggregate)
* {
* int old_prefix = running_total;
* running_total += block_aggregate;
* return old_prefix;
* }
* };
*
* __global__ void ExampleKernel(int *d_data, int num_items, ...)
* {
* // Specialize BlockScan for a 1D block of 128 threads
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Initialize running total
* BlockPrefixCallbackOp prefix_op(0);
*
* // Have the block iterate over segments of items
* for (int block_offset = 0; block_offset < num_items; block_offset += 128)
* {
* // Load a segment of consecutive items that are blocked across threads
* int thread_data = d_data[block_offset];
*
* // Collectively compute the block-wide exclusive prefix sum
* BlockScan(temp_storage).ExclusiveSum(
* thread_data, thread_data, prefix_op);
* CTA_SYNC();
*
* // Store scanned items to output segment
* d_data[block_offset] = thread_data;
* }
* \endcode
* \par
* Suppose the input \p d_data is <tt>1, 1, 1, 1, 1, 1, 1, 1, ...</tt>.
* The corresponding output for the first segment will be <tt>0, 1, ..., 127</tt>.
* The output for the second segment will be <tt>128, 129, ..., 255</tt>.
*
* \tparam BlockPrefixCallbackOp <b>[inferred]</b> Call-back functor type having member <tt>T operator()(T block_aggregate)</tt>
*/
template <typename BlockPrefixCallbackOp>
__device__ __forceinline__ void ExclusiveSum(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide prefix to be applied to the logical input sequence.
{
ExclusiveScan(input, output, cub::Sum(), block_prefix_callback_op);
}
//@} end member group
/******************************************************************//**
* \name Exclusive prefix sum operations (multiple data per thread)
*********************************************************************/
//@{
/**
* \brief Computes an exclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes an array of consecutive input elements. The value of 0 is applied as the initial value, and is assigned to \p output[0] in <em>thread</em><sub>0</sub>.
*
* \par
* - \identityzero
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an exclusive prefix sum of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Collectively compute the block-wide exclusive prefix sum
* BlockScan(temp_storage).ExclusiveSum(thread_data, thread_data);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>{ [1,1,1,1], [1,1,1,1], ..., [1,1,1,1] }</tt>. The
* corresponding output \p thread_data in those threads will be <tt>{ [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }</tt>.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
*/
template <int ITEMS_PER_THREAD>
__device__ __forceinline__ void ExclusiveSum(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD]) ///< [out] Calling thread's output items (may be aliased to \p input)
{
#if CUB_CPP_DIALECT < 2011 // T must be able to be initialized from 0 pre-c++11
T initial_value = 0;
#else
T initial_value{};
#endif
ExclusiveScan(input, output, initial_value, cub::Sum());
}
/**
* \brief Computes an exclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes an array of consecutive input elements. The value of 0 is applied as the initial value, and is assigned to \p output[0] in <em>thread</em><sub>0</sub>. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - \identityzero
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an exclusive prefix sum of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Collectively compute the block-wide exclusive prefix sum
* int block_aggregate;
* BlockScan(temp_storage).ExclusiveSum(thread_data, thread_data, block_aggregate);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>{ [1,1,1,1], [1,1,1,1], ..., [1,1,1,1] }</tt>. The
* corresponding output \p thread_data in those threads will be <tt>{ [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }</tt>.
* Furthermore the value \p 512 will be stored in \p block_aggregate for all threads.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
*/
template <int ITEMS_PER_THREAD>
__device__ __forceinline__ void ExclusiveSum(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
T &block_aggregate) ///< [out] block-wide aggregate reduction of input items
{
// Reduce consecutive thread items in registers
#if CUB_CPP_DIALECT < 2011 // T must be able to be initialized from 0 pre-c++11
T initial_value = 0;
#else
T initial_value{};
#endif
ExclusiveScan(input, output, initial_value, cub::Sum(), block_aggregate);
}
/**
* \brief Computes an exclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes an array of consecutive input elements. Instead of using 0 as the block-wide prefix, the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - \identityzero
* - The \p block_prefix_callback_op functor must implement a member function <tt>T operator()(T block_aggregate)</tt>.
* The functor's input parameter \p block_aggregate is the same value also returned by the scan operation.
* The functor will be invoked by the first warp of threads in the block, however only the return value from
* <em>lane</em><sub>0</sub> is applied as the block-wide prefix. Can be stateful.
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a single thread block that progressively
* computes an exclusive prefix sum over multiple "tiles" of input using a
* prefix functor to maintain a running total between block-wide scans. Each tile consists
* of 512 integer items that are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3)
* across 128 threads where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* // A stateful callback functor that maintains a running prefix to be applied
* // during consecutive scan operations.
* struct BlockPrefixCallbackOp
* {
* // Running prefix
* int running_total;
*
* // Constructor
* __device__ BlockPrefixCallbackOp(int running_total) : running_total(running_total) {}
*
* // Callback operator to be entered by the first warp of threads in the block.
* // Thread-0 is responsible for returning a value for seeding the block-wide scan.
* __device__ int operator()(int block_aggregate)
* {
* int old_prefix = running_total;
* running_total += block_aggregate;
* return old_prefix;
* }
* };
*
* __global__ void ExampleKernel(int *d_data, int num_items, ...)
* {
* // Specialize BlockLoad, BlockStore, and BlockScan for a 1D block of 128 threads, 4 ints per thread
* typedef cub::BlockLoad<int*, 128, 4, BLOCK_LOAD_TRANSPOSE> BlockLoad;
* typedef cub::BlockStore<int, 128, 4, BLOCK_STORE_TRANSPOSE> BlockStore;
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate aliased shared memory for BlockLoad, BlockStore, and BlockScan
* __shared__ union {
* typename BlockLoad::TempStorage load;
* typename BlockScan::TempStorage scan;
* typename BlockStore::TempStorage store;
* } temp_storage;
*
* // Initialize running total
* BlockPrefixCallbackOp prefix_op(0);
*
* // Have the block iterate over segments of items
* for (int block_offset = 0; block_offset < num_items; block_offset += 128 * 4)
* {
* // Load a segment of consecutive items that are blocked across threads
* int thread_data[4];
* BlockLoad(temp_storage.load).Load(d_data + block_offset, thread_data);
* CTA_SYNC();
*
* // Collectively compute the block-wide exclusive prefix sum
* int block_aggregate;
* BlockScan(temp_storage.scan).ExclusiveSum(
* thread_data, thread_data, prefix_op);
* CTA_SYNC();
*
* // Store scanned items to output segment
* BlockStore(temp_storage.store).Store(d_data + block_offset, thread_data);
* CTA_SYNC();
* }
* \endcode
* \par
* Suppose the input \p d_data is <tt>1, 1, 1, 1, 1, 1, 1, 1, ...</tt>.
* The corresponding output for the first segment will be <tt>0, 1, 2, 3, ..., 510, 511</tt>.
* The output for the second segment will be <tt>512, 513, 514, 515, ..., 1022, 1023</tt>.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam BlockPrefixCallbackOp <b>[inferred]</b> Call-back functor type having member <tt>T operator()(T block_aggregate)</tt>
*/
template <
int ITEMS_PER_THREAD,
typename BlockPrefixCallbackOp>
__device__ __forceinline__ void ExclusiveSum(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide prefix to be applied to the logical input sequence.
{
ExclusiveScan(input, output, cub::Sum(), block_prefix_callback_op);
}
//@} end member group // Exclusive prefix sums
/******************************************************************//**
* \name Exclusive prefix scan operations
*********************************************************************/
//@{
/**
* \brief Computes an exclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element.
*
* \par
* - Supports non-commutative scan operators.
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an exclusive prefix max scan of 128 integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain input item for each thread
* int thread_data;
* ...
*
* // Collectively compute the block-wide exclusive prefix max scan
* BlockScan(temp_storage).ExclusiveScan(thread_data, thread_data, INT_MIN, cub::Max());
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>0, -1, 2, -3, ..., 126, -127</tt>. The
* corresponding output \p thread_data in those threads will be <tt>INT_MIN, 0, 0, 2, ..., 124, 126</tt>.
*
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
T initial_value, ///< [in] Initial value to seed the exclusive scan (and is assigned to \p output[0] in <em>thread</em><sub>0</sub>)
ScanOp scan_op) ///< [in] Binary scan functor
{
InternalBlockScan(temp_storage).ExclusiveScan(input, output, initial_value, scan_op);
}
/**
* \brief Computes an exclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - Supports non-commutative scan operators.
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an exclusive prefix max scan of 128 integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain input item for each thread
* int thread_data;
* ...
*
* // Collectively compute the block-wide exclusive prefix max scan
* int block_aggregate;
* BlockScan(temp_storage).ExclusiveScan(thread_data, thread_data, INT_MIN, cub::Max(), block_aggregate);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>0, -1, 2, -3, ..., 126, -127</tt>. The
* corresponding output \p thread_data in those threads will be <tt>INT_MIN, 0, 0, 2, ..., 124, 126</tt>.
* Furthermore the value \p 126 will be stored in \p block_aggregate for all threads.
*
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input items
T &output, ///< [out] Calling thread's output items (may be aliased to \p input)
T initial_value, ///< [in] Initial value to seed the exclusive scan (and is assigned to \p output[0] in <em>thread</em><sub>0</sub>)
ScanOp scan_op, ///< [in] Binary scan functor
T &block_aggregate) ///< [out] block-wide aggregate reduction of input items
{
InternalBlockScan(temp_storage).ExclusiveScan(input, output, initial_value, scan_op, block_aggregate);
}
/**
* \brief Computes an exclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - The \p block_prefix_callback_op functor must implement a member function <tt>T operator()(T block_aggregate)</tt>.
* The functor's input parameter \p block_aggregate is the same value also returned by the scan operation.
* The functor will be invoked by the first warp of threads in the block, however only the return value from
* <em>lane</em><sub>0</sub> is applied as the block-wide prefix. Can be stateful.
* - Supports non-commutative scan operators.
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a single thread block that progressively
* computes an exclusive prefix max scan over multiple "tiles" of input using a
* prefix functor to maintain a running total between block-wide scans. Each tile consists
* of 128 integer items that are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* // A stateful callback functor that maintains a running prefix to be applied
* // during consecutive scan operations.
* struct BlockPrefixCallbackOp
* {
* // Running prefix
* int running_total;
*
* // Constructor
* __device__ BlockPrefixCallbackOp(int running_total) : running_total(running_total) {}
*
* // Callback operator to be entered by the first warp of threads in the block.
* // Thread-0 is responsible for returning a value for seeding the block-wide scan.
* __device__ int operator()(int block_aggregate)
* {
* int old_prefix = running_total;
* running_total = (block_aggregate > old_prefix) ? block_aggregate : old_prefix;
* return old_prefix;
* }
* };
*
* __global__ void ExampleKernel(int *d_data, int num_items, ...)
* {
* // Specialize BlockScan for a 1D block of 128 threads
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Initialize running total
* BlockPrefixCallbackOp prefix_op(INT_MIN);
*
* // Have the block iterate over segments of items
* for (int block_offset = 0; block_offset < num_items; block_offset += 128)
* {
* // Load a segment of consecutive items that are blocked across threads
* int thread_data = d_data[block_offset];
*
* // Collectively compute the block-wide exclusive prefix max scan
* BlockScan(temp_storage).ExclusiveScan(
* thread_data, thread_data, INT_MIN, cub::Max(), prefix_op);
* CTA_SYNC();
*
* // Store scanned items to output segment
* d_data[block_offset] = thread_data;
* }
* \endcode
* \par
* Suppose the input \p d_data is <tt>0, -1, 2, -3, 4, -5, ...</tt>.
* The corresponding output for the first segment will be <tt>INT_MIN, 0, 0, 2, ..., 124, 126</tt>.
* The output for the second segment will be <tt>126, 128, 128, 130, ..., 252, 254</tt>.
*
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
* \tparam BlockPrefixCallbackOp <b>[inferred]</b> Call-back functor type having member <tt>T operator()(T block_aggregate)</tt>
*/
template <
typename ScanOp,
typename BlockPrefixCallbackOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan functor
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide prefix to be applied to the logical input sequence.
{
InternalBlockScan(temp_storage).ExclusiveScan(input, output, scan_op, block_prefix_callback_op);
}
//@} end member group // Inclusive prefix sums
/******************************************************************//**
* \name Exclusive prefix scan operations (multiple data per thread)
*********************************************************************/
//@{
/**
* \brief Computes an exclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements.
*
* \par
* - Supports non-commutative scan operators.
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an exclusive prefix max scan of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Collectively compute the block-wide exclusive prefix max scan
* BlockScan(temp_storage).ExclusiveScan(thread_data, thread_data, INT_MIN, cub::Max());
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is
* <tt>{ [0,-1,2,-3], [4,-5,6,-7], ..., [508,-509,510,-511] }</tt>.
* The corresponding output \p thread_data in those threads will be
* <tt>{ [INT_MIN,0,0,2], [2,4,4,6], ..., [506,508,508,510] }</tt>.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <
int ITEMS_PER_THREAD,
typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
T initial_value, ///< [in] Initial value to seed the exclusive scan (and is assigned to \p output[0] in <em>thread</em><sub>0</sub>)
ScanOp scan_op) ///< [in] Binary scan functor
{
// Reduce consecutive thread items in registers
T thread_prefix = internal::ThreadReduce(input, scan_op);
// Exclusive thread block-scan
ExclusiveScan(thread_prefix, thread_prefix, initial_value, scan_op);
// Exclusive scan in registers with prefix as seed
internal::ThreadScanExclusive(input, output, scan_op, thread_prefix);
}
/**
* \brief Computes an exclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - Supports non-commutative scan operators.
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an exclusive prefix max scan of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Collectively compute the block-wide exclusive prefix max scan
* int block_aggregate;
* BlockScan(temp_storage).ExclusiveScan(thread_data, thread_data, INT_MIN, cub::Max(), block_aggregate);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>{ [0,-1,2,-3], [4,-5,6,-7], ..., [508,-509,510,-511] }</tt>. The
* corresponding output \p thread_data in those threads will be <tt>{ [INT_MIN,0,0,2], [2,4,4,6], ..., [506,508,508,510] }</tt>.
* Furthermore the value \p 510 will be stored in \p block_aggregate for all threads.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <
int ITEMS_PER_THREAD,
typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
T initial_value, ///< [in] Initial value to seed the exclusive scan (and is assigned to \p output[0] in <em>thread</em><sub>0</sub>)
ScanOp scan_op, ///< [in] Binary scan functor
T &block_aggregate) ///< [out] block-wide aggregate reduction of input items
{
// Reduce consecutive thread items in registers
T thread_prefix = internal::ThreadReduce(input, scan_op);
// Exclusive thread block-scan
ExclusiveScan(thread_prefix, thread_prefix, initial_value, scan_op, block_aggregate);
// Exclusive scan in registers with prefix as seed
internal::ThreadScanExclusive(input, output, scan_op, thread_prefix);
}
/**
* \brief Computes an exclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements. the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - The \p block_prefix_callback_op functor must implement a member function <tt>T operator()(T block_aggregate)</tt>.
* The functor's input parameter \p block_aggregate is the same value also returned by the scan operation.
* The functor will be invoked by the first warp of threads in the block, however only the return value from
* <em>lane</em><sub>0</sub> is applied as the block-wide prefix. Can be stateful.
* - Supports non-commutative scan operators.
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a single thread block that progressively
* computes an exclusive prefix max scan over multiple "tiles" of input using a
* prefix functor to maintain a running total between block-wide scans. Each tile consists
* of 128 integer items that are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* // A stateful callback functor that maintains a running prefix to be applied
* // during consecutive scan operations.
* struct BlockPrefixCallbackOp
* {
* // Running prefix
* int running_total;
*
* // Constructor
* __device__ BlockPrefixCallbackOp(int running_total) : running_total(running_total) {}
*
* // Callback operator to be entered by the first warp of threads in the block.
* // Thread-0 is responsible for returning a value for seeding the block-wide scan.
* __device__ int operator()(int block_aggregate)
* {
* int old_prefix = running_total;
* running_total = (block_aggregate > old_prefix) ? block_aggregate : old_prefix;
* return old_prefix;
* }
* };
*
* __global__ void ExampleKernel(int *d_data, int num_items, ...)
* {
* // Specialize BlockLoad, BlockStore, and BlockScan for a 1D block of 128 threads, 4 ints per thread
* typedef cub::BlockLoad<int*, 128, 4, BLOCK_LOAD_TRANSPOSE> BlockLoad;
* typedef cub::BlockStore<int, 128, 4, BLOCK_STORE_TRANSPOSE> BlockStore;
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate aliased shared memory for BlockLoad, BlockStore, and BlockScan
* __shared__ union {
* typename BlockLoad::TempStorage load;
* typename BlockScan::TempStorage scan;
* typename BlockStore::TempStorage store;
* } temp_storage;
*
* // Initialize running total
* BlockPrefixCallbackOp prefix_op(0);
*
* // Have the block iterate over segments of items
* for (int block_offset = 0; block_offset < num_items; block_offset += 128 * 4)
* {
* // Load a segment of consecutive items that are blocked across threads
* int thread_data[4];
* BlockLoad(temp_storage.load).Load(d_data + block_offset, thread_data);
* CTA_SYNC();
*
* // Collectively compute the block-wide exclusive prefix max scan
* BlockScan(temp_storage.scan).ExclusiveScan(
* thread_data, thread_data, INT_MIN, cub::Max(), prefix_op);
* CTA_SYNC();
*
* // Store scanned items to output segment
* BlockStore(temp_storage.store).Store(d_data + block_offset, thread_data);
* CTA_SYNC();
* }
* \endcode
* \par
* Suppose the input \p d_data is <tt>0, -1, 2, -3, 4, -5, ...</tt>.
* The corresponding output for the first segment will be <tt>INT_MIN, 0, 0, 2, 2, 4, ..., 508, 510</tt>.
* The output for the second segment will be <tt>510, 512, 512, 514, 514, 516, ..., 1020, 1022</tt>.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
* \tparam BlockPrefixCallbackOp <b>[inferred]</b> Call-back functor type having member <tt>T operator()(T block_aggregate)</tt>
*/
template <
int ITEMS_PER_THREAD,
typename ScanOp,
typename BlockPrefixCallbackOp>
__device__ __forceinline__ void ExclusiveScan(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan functor
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide prefix to be applied to the logical input sequence.
{
// Reduce consecutive thread items in registers
T thread_prefix = internal::ThreadReduce(input, scan_op);
// Exclusive thread block-scan
ExclusiveScan(thread_prefix, thread_prefix, scan_op, block_prefix_callback_op);
// Exclusive scan in registers with prefix as seed
internal::ThreadScanExclusive(input, output, scan_op, thread_prefix);
}
//@} end member group
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document no-initial-value scans
/******************************************************************//**
* \name Exclusive prefix scan operations (no initial value, single datum per thread)
*********************************************************************/
//@{
/**
* \brief Computes an exclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. With no initial value, the output computed for <em>thread</em><sub>0</sub> is undefined.
*
* \par
* - Supports non-commutative scan operators.
* - \rowmajor
* - \smemreuse
*
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op) ///< [in] Binary scan functor
{
InternalBlockScan(temp_storage).ExclusiveScan(input, output, scan_op);
}
/**
* \brief Computes an exclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. Also provides every thread with the block-wide \p block_aggregate of all inputs. With no initial value, the output computed for <em>thread</em><sub>0</sub> is undefined.
*
* \par
* - Supports non-commutative scan operators.
* - \rowmajor
* - \smemreuse
*
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan functor
T &block_aggregate) ///< [out] block-wide aggregate reduction of input items
{
InternalBlockScan(temp_storage).ExclusiveScan(input, output, scan_op, block_aggregate);
}
//@} end member group
/******************************************************************//**
* \name Exclusive prefix scan operations (no initial value, multiple data per thread)
*********************************************************************/
//@{
/**
* \brief Computes an exclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements. With no initial value, the output computed for <em>thread</em><sub>0</sub> is undefined.
*
* \par
* - Supports non-commutative scan operators.
* - \blocked
* - \granularity
* - \smemreuse
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <
int ITEMS_PER_THREAD,
typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
ScanOp scan_op) ///< [in] Binary scan functor
{
// Reduce consecutive thread items in registers
T thread_partial = internal::ThreadReduce(input, scan_op);
// Exclusive thread block-scan
ExclusiveScan(thread_partial, thread_partial, scan_op);
// Exclusive scan in registers with prefix
internal::ThreadScanExclusive(input, output, scan_op, thread_partial, (linear_tid != 0));
}
/**
* \brief Computes an exclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements. Also provides every thread with the block-wide \p block_aggregate of all inputs. With no initial value, the output computed for <em>thread</em><sub>0</sub> is undefined.
*
* \par
* - Supports non-commutative scan operators.
* - \blocked
* - \granularity
* - \smemreuse
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <
int ITEMS_PER_THREAD,
typename ScanOp>
__device__ __forceinline__ void ExclusiveScan(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan functor
T &block_aggregate) ///< [out] block-wide aggregate reduction of input items
{
// Reduce consecutive thread items in registers
T thread_partial = internal::ThreadReduce(input, scan_op);
// Exclusive thread block-scan
ExclusiveScan(thread_partial, thread_partial, scan_op, block_aggregate);
// Exclusive scan in registers with prefix
internal::ThreadScanExclusive(input, output, scan_op, thread_partial, (linear_tid != 0));
}
//@} end member group
#endif // DOXYGEN_SHOULD_SKIP_THIS // Do not document no-initial-value scans
/******************************************************************//**
* \name Inclusive prefix sum operations
*********************************************************************/
//@{
/**
* \brief Computes an inclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes one input element.
*
* \par
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an inclusive prefix sum of 128 integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain input item for each thread
* int thread_data;
* ...
*
* // Collectively compute the block-wide inclusive prefix sum
* BlockScan(temp_storage).InclusiveSum(thread_data, thread_data);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>1, 1, ..., 1</tt>. The
* corresponding output \p thread_data in those threads will be <tt>1, 2, ..., 128</tt>.
*
*/
__device__ __forceinline__ void InclusiveSum(
T input, ///< [in] Calling thread's input item
T &output) ///< [out] Calling thread's output item (may be aliased to \p input)
{
InclusiveScan(input, output, cub::Sum());
}
/**
* \brief Computes an inclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes one input element. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an inclusive prefix sum of 128 integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain input item for each thread
* int thread_data;
* ...
*
* // Collectively compute the block-wide inclusive prefix sum
* int block_aggregate;
* BlockScan(temp_storage).InclusiveSum(thread_data, thread_data, block_aggregate);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>1, 1, ..., 1</tt>. The
* corresponding output \p thread_data in those threads will be <tt>1, 2, ..., 128</tt>.
* Furthermore the value \p 128 will be stored in \p block_aggregate for all threads.
*
*/
__device__ __forceinline__ void InclusiveSum(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
T &block_aggregate) ///< [out] block-wide aggregate reduction of input items
{
InclusiveScan(input, output, cub::Sum(), block_aggregate);
}
/**
* \brief Computes an inclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes one input element. Instead of using 0 as the block-wide prefix, the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - The \p block_prefix_callback_op functor must implement a member function <tt>T operator()(T block_aggregate)</tt>.
* The functor's input parameter \p block_aggregate is the same value also returned by the scan operation.
* The functor will be invoked by the first warp of threads in the block, however only the return value from
* <em>lane</em><sub>0</sub> is applied as the block-wide prefix. Can be stateful.
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a single thread block that progressively
* computes an inclusive prefix sum over multiple "tiles" of input using a
* prefix functor to maintain a running total between block-wide scans. Each tile consists
* of 128 integer items that are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* // A stateful callback functor that maintains a running prefix to be applied
* // during consecutive scan operations.
* struct BlockPrefixCallbackOp
* {
* // Running prefix
* int running_total;
*
* // Constructor
* __device__ BlockPrefixCallbackOp(int running_total) : running_total(running_total) {}
*
* // Callback operator to be entered by the first warp of threads in the block.
* // Thread-0 is responsible for returning a value for seeding the block-wide scan.
* __device__ int operator()(int block_aggregate)
* {
* int old_prefix = running_total;
* running_total += block_aggregate;
* return old_prefix;
* }
* };
*
* __global__ void ExampleKernel(int *d_data, int num_items, ...)
* {
* // Specialize BlockScan for a 1D block of 128 threads
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Initialize running total
* BlockPrefixCallbackOp prefix_op(0);
*
* // Have the block iterate over segments of items
* for (int block_offset = 0; block_offset < num_items; block_offset += 128)
* {
* // Load a segment of consecutive items that are blocked across threads
* int thread_data = d_data[block_offset];
*
* // Collectively compute the block-wide inclusive prefix sum
* BlockScan(temp_storage).InclusiveSum(
* thread_data, thread_data, prefix_op);
* CTA_SYNC();
*
* // Store scanned items to output segment
* d_data[block_offset] = thread_data;
* }
* \endcode
* \par
* Suppose the input \p d_data is <tt>1, 1, 1, 1, 1, 1, 1, 1, ...</tt>.
* The corresponding output for the first segment will be <tt>1, 2, ..., 128</tt>.
* The output for the second segment will be <tt>129, 130, ..., 256</tt>.
*
* \tparam BlockPrefixCallbackOp <b>[inferred]</b> Call-back functor type having member <tt>T operator()(T block_aggregate)</tt>
*/
template <typename BlockPrefixCallbackOp>
__device__ __forceinline__ void InclusiveSum(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide prefix to be applied to the logical input sequence.
{
InclusiveScan(input, output, cub::Sum(), block_prefix_callback_op);
}
//@} end member group
/******************************************************************//**
* \name Inclusive prefix sum operations (multiple data per thread)
*********************************************************************/
//@{
/**
* \brief Computes an inclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes an array of consecutive input elements.
*
* \par
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an inclusive prefix sum of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Collectively compute the block-wide inclusive prefix sum
* BlockScan(temp_storage).InclusiveSum(thread_data, thread_data);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>{ [1,1,1,1], [1,1,1,1], ..., [1,1,1,1] }</tt>. The
* corresponding output \p thread_data in those threads will be <tt>{ [1,2,3,4], [5,6,7,8], ..., [509,510,511,512] }</tt>.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
*/
template <int ITEMS_PER_THREAD>
__device__ __forceinline__ void InclusiveSum(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD]) ///< [out] Calling thread's output items (may be aliased to \p input)
{
if (ITEMS_PER_THREAD == 1)
{
InclusiveSum(input[0], output[0]);
}
else
{
// Reduce consecutive thread items in registers
Sum scan_op;
T thread_prefix = internal::ThreadReduce(input, scan_op);
// Exclusive thread block-scan
ExclusiveSum(thread_prefix, thread_prefix);
// Inclusive scan in registers with prefix as seed
internal::ThreadScanInclusive(input, output, scan_op, thread_prefix, (linear_tid != 0));
}
}
/**
* \brief Computes an inclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes an array of consecutive input elements. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an inclusive prefix sum of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Collectively compute the block-wide inclusive prefix sum
* int block_aggregate;
* BlockScan(temp_storage).InclusiveSum(thread_data, thread_data, block_aggregate);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is
* <tt>{ [1,1,1,1], [1,1,1,1], ..., [1,1,1,1] }</tt>. The
* corresponding output \p thread_data in those threads will be
* <tt>{ [1,2,3,4], [5,6,7,8], ..., [509,510,511,512] }</tt>.
* Furthermore the value \p 512 will be stored in \p block_aggregate for all threads.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <int ITEMS_PER_THREAD>
__device__ __forceinline__ void InclusiveSum(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
T &block_aggregate) ///< [out] block-wide aggregate reduction of input items
{
if (ITEMS_PER_THREAD == 1)
{
InclusiveSum(input[0], output[0], block_aggregate);
}
else
{
// Reduce consecutive thread items in registers
Sum scan_op;
T thread_prefix = internal::ThreadReduce(input, scan_op);
// Exclusive thread block-scan
ExclusiveSum(thread_prefix, thread_prefix, block_aggregate);
// Inclusive scan in registers with prefix as seed
internal::ThreadScanInclusive(input, output, scan_op, thread_prefix, (linear_tid != 0));
}
}
/**
* \brief Computes an inclusive block-wide prefix scan using addition (+) as the scan operator. Each thread contributes an array of consecutive input elements. Instead of using 0 as the block-wide prefix, the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - The \p block_prefix_callback_op functor must implement a member function <tt>T operator()(T block_aggregate)</tt>.
* The functor's input parameter \p block_aggregate is the same value also returned by the scan operation.
* The functor will be invoked by the first warp of threads in the block, however only the return value from
* <em>lane</em><sub>0</sub> is applied as the block-wide prefix. Can be stateful.
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a single thread block that progressively
* computes an inclusive prefix sum over multiple "tiles" of input using a
* prefix functor to maintain a running total between block-wide scans. Each tile consists
* of 512 integer items that are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3)
* across 128 threads where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* // A stateful callback functor that maintains a running prefix to be applied
* // during consecutive scan operations.
* struct BlockPrefixCallbackOp
* {
* // Running prefix
* int running_total;
*
* // Constructor
* __device__ BlockPrefixCallbackOp(int running_total) : running_total(running_total) {}
*
* // Callback operator to be entered by the first warp of threads in the block.
* // Thread-0 is responsible for returning a value for seeding the block-wide scan.
* __device__ int operator()(int block_aggregate)
* {
* int old_prefix = running_total;
* running_total += block_aggregate;
* return old_prefix;
* }
* };
*
* __global__ void ExampleKernel(int *d_data, int num_items, ...)
* {
* // Specialize BlockLoad, BlockStore, and BlockScan for a 1D block of 128 threads, 4 ints per thread
* typedef cub::BlockLoad<int*, 128, 4, BLOCK_LOAD_TRANSPOSE> BlockLoad;
* typedef cub::BlockStore<int, 128, 4, BLOCK_STORE_TRANSPOSE> BlockStore;
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate aliased shared memory for BlockLoad, BlockStore, and BlockScan
* __shared__ union {
* typename BlockLoad::TempStorage load;
* typename BlockScan::TempStorage scan;
* typename BlockStore::TempStorage store;
* } temp_storage;
*
* // Initialize running total
* BlockPrefixCallbackOp prefix_op(0);
*
* // Have the block iterate over segments of items
* for (int block_offset = 0; block_offset < num_items; block_offset += 128 * 4)
* {
* // Load a segment of consecutive items that are blocked across threads
* int thread_data[4];
* BlockLoad(temp_storage.load).Load(d_data + block_offset, thread_data);
* CTA_SYNC();
*
* // Collectively compute the block-wide inclusive prefix sum
* BlockScan(temp_storage.scan).IncluisveSum(
* thread_data, thread_data, prefix_op);
* CTA_SYNC();
*
* // Store scanned items to output segment
* BlockStore(temp_storage.store).Store(d_data + block_offset, thread_data);
* CTA_SYNC();
* }
* \endcode
* \par
* Suppose the input \p d_data is <tt>1, 1, 1, 1, 1, 1, 1, 1, ...</tt>.
* The corresponding output for the first segment will be <tt>1, 2, 3, 4, ..., 511, 512</tt>.
* The output for the second segment will be <tt>513, 514, 515, 516, ..., 1023, 1024</tt>.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam BlockPrefixCallbackOp <b>[inferred]</b> Call-back functor type having member <tt>T operator()(T block_aggregate)</tt>
*/
template <
int ITEMS_PER_THREAD,
typename BlockPrefixCallbackOp>
__device__ __forceinline__ void InclusiveSum(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide prefix to be applied to the logical input sequence.
{
if (ITEMS_PER_THREAD == 1)
{
InclusiveSum(input[0], output[0], block_prefix_callback_op);
}
else
{
// Reduce consecutive thread items in registers
Sum scan_op;
T thread_prefix = internal::ThreadReduce(input, scan_op);
// Exclusive thread block-scan
ExclusiveSum(thread_prefix, thread_prefix, block_prefix_callback_op);
// Inclusive scan in registers with prefix as seed
internal::ThreadScanInclusive(input, output, scan_op, thread_prefix);
}
}
//@} end member group
/******************************************************************//**
* \name Inclusive prefix scan operations
*********************************************************************/
//@{
/**
* \brief Computes an inclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element.
*
* \par
* - Supports non-commutative scan operators.
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an inclusive prefix max scan of 128 integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain input item for each thread
* int thread_data;
* ...
*
* // Collectively compute the block-wide inclusive prefix max scan
* BlockScan(temp_storage).InclusiveScan(thread_data, thread_data, cub::Max());
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>0, -1, 2, -3, ..., 126, -127</tt>. The
* corresponding output \p thread_data in those threads will be <tt>0, 0, 2, 2, ..., 126, 126</tt>.
*
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <typename ScanOp>
__device__ __forceinline__ void InclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op) ///< [in] Binary scan functor
{
InternalBlockScan(temp_storage).InclusiveScan(input, output, scan_op);
}
/**
* \brief Computes an inclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - Supports non-commutative scan operators.
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an inclusive prefix max scan of 128 integer items that
* are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain input item for each thread
* int thread_data;
* ...
*
* // Collectively compute the block-wide inclusive prefix max scan
* int block_aggregate;
* BlockScan(temp_storage).InclusiveScan(thread_data, thread_data, cub::Max(), block_aggregate);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>0, -1, 2, -3, ..., 126, -127</tt>. The
* corresponding output \p thread_data in those threads will be <tt>0, 0, 2, 2, ..., 126, 126</tt>.
* Furthermore the value \p 126 will be stored in \p block_aggregate for all threads.
*
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <typename ScanOp>
__device__ __forceinline__ void InclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan functor
T &block_aggregate) ///< [out] block-wide aggregate reduction of input items
{
InternalBlockScan(temp_storage).InclusiveScan(input, output, scan_op, block_aggregate);
}
/**
* \brief Computes an inclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes one input element. the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - The \p block_prefix_callback_op functor must implement a member function <tt>T operator()(T block_aggregate)</tt>.
* The functor's input parameter \p block_aggregate is the same value also returned by the scan operation.
* The functor will be invoked by the first warp of threads in the block, however only the return value from
* <em>lane</em><sub>0</sub> is applied as the block-wide prefix. Can be stateful.
* - Supports non-commutative scan operators.
* - \rowmajor
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a single thread block that progressively
* computes an inclusive prefix max scan over multiple "tiles" of input using a
* prefix functor to maintain a running total between block-wide scans. Each tile consists
* of 128 integer items that are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* // A stateful callback functor that maintains a running prefix to be applied
* // during consecutive scan operations.
* struct BlockPrefixCallbackOp
* {
* // Running prefix
* int running_total;
*
* // Constructor
* __device__ BlockPrefixCallbackOp(int running_total) : running_total(running_total) {}
*
* // Callback operator to be entered by the first warp of threads in the block.
* // Thread-0 is responsible for returning a value for seeding the block-wide scan.
* __device__ int operator()(int block_aggregate)
* {
* int old_prefix = running_total;
* running_total = (block_aggregate > old_prefix) ? block_aggregate : old_prefix;
* return old_prefix;
* }
* };
*
* __global__ void ExampleKernel(int *d_data, int num_items, ...)
* {
* // Specialize BlockScan for a 1D block of 128 threads
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Initialize running total
* BlockPrefixCallbackOp prefix_op(INT_MIN);
*
* // Have the block iterate over segments of items
* for (int block_offset = 0; block_offset < num_items; block_offset += 128)
* {
* // Load a segment of consecutive items that are blocked across threads
* int thread_data = d_data[block_offset];
*
* // Collectively compute the block-wide inclusive prefix max scan
* BlockScan(temp_storage).InclusiveScan(
* thread_data, thread_data, cub::Max(), prefix_op);
* CTA_SYNC();
*
* // Store scanned items to output segment
* d_data[block_offset] = thread_data;
* }
* \endcode
* \par
* Suppose the input \p d_data is <tt>0, -1, 2, -3, 4, -5, ...</tt>.
* The corresponding output for the first segment will be <tt>0, 0, 2, 2, ..., 126, 126</tt>.
* The output for the second segment will be <tt>128, 128, 130, 130, ..., 254, 254</tt>.
*
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
* \tparam BlockPrefixCallbackOp <b>[inferred]</b> Call-back functor type having member <tt>T operator()(T block_aggregate)</tt>
*/
template <
typename ScanOp,
typename BlockPrefixCallbackOp>
__device__ __forceinline__ void InclusiveScan(
T input, ///< [in] Calling thread's input item
T &output, ///< [out] Calling thread's output item (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan functor
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide prefix to be applied to the logical input sequence.
{
InternalBlockScan(temp_storage).InclusiveScan(input, output, scan_op, block_prefix_callback_op);
}
//@} end member group
/******************************************************************//**
* \name Inclusive prefix scan operations (multiple data per thread)
*********************************************************************/
//@{
/**
* \brief Computes an inclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements.
*
* \par
* - Supports non-commutative scan operators.
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an inclusive prefix max scan of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Collectively compute the block-wide inclusive prefix max scan
* BlockScan(temp_storage).InclusiveScan(thread_data, thread_data, cub::Max());
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is <tt>{ [0,-1,2,-3], [4,-5,6,-7], ..., [508,-509,510,-511] }</tt>. The
* corresponding output \p thread_data in those threads will be <tt>{ [0,0,2,2], [4,4,6,6], ..., [508,508,510,510] }</tt>.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <
int ITEMS_PER_THREAD,
typename ScanOp>
__device__ __forceinline__ void InclusiveScan(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
ScanOp scan_op) ///< [in] Binary scan functor
{
if (ITEMS_PER_THREAD == 1)
{
InclusiveScan(input[0], output[0], scan_op);
}
else
{
// Reduce consecutive thread items in registers
T thread_prefix = internal::ThreadReduce(input, scan_op);
// Exclusive thread block-scan
ExclusiveScan(thread_prefix, thread_prefix, scan_op);
// Inclusive scan in registers with prefix as seed (first thread does not seed)
internal::ThreadScanInclusive(input, output, scan_op, thread_prefix, (linear_tid != 0));
}
}
/**
* \brief Computes an inclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - Supports non-commutative scan operators.
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates an inclusive prefix max scan of 512 integer items that
* are partitioned in a [<em>blocked arrangement</em>](index.html#sec5sec3) across 128 threads
* where each thread owns 4 consecutive items.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* __global__ void ExampleKernel(...)
* {
* // Specialize BlockScan for a 1D block of 128 threads on type int
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate shared memory for BlockScan
* __shared__ typename BlockScan::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Collectively compute the block-wide inclusive prefix max scan
* int block_aggregate;
* BlockScan(temp_storage).InclusiveScan(thread_data, thread_data, cub::Max(), block_aggregate);
*
* \endcode
* \par
* Suppose the set of input \p thread_data across the block of threads is
* <tt>{ [0,-1,2,-3], [4,-5,6,-7], ..., [508,-509,510,-511] }</tt>.
* The corresponding output \p thread_data in those threads will be
* <tt>{ [0,0,2,2], [4,4,6,6], ..., [508,508,510,510] }</tt>.
* Furthermore the value \p 510 will be stored in \p block_aggregate for all threads.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
*/
template <
int ITEMS_PER_THREAD,
typename ScanOp>
__device__ __forceinline__ void InclusiveScan(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan functor
T &block_aggregate) ///< [out] block-wide aggregate reduction of input items
{
if (ITEMS_PER_THREAD == 1)
{
InclusiveScan(input[0], output[0], scan_op, block_aggregate);
}
else
{
// Reduce consecutive thread items in registers
T thread_prefix = internal::ThreadReduce(input, scan_op);
// Exclusive thread block-scan (with no initial value)
ExclusiveScan(thread_prefix, thread_prefix, scan_op, block_aggregate);
// Inclusive scan in registers with prefix as seed (first thread does not seed)
internal::ThreadScanInclusive(input, output, scan_op, thread_prefix, (linear_tid != 0));
}
}
/**
* \brief Computes an inclusive block-wide prefix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements. the call-back functor \p block_prefix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically prefixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
*
* \par
* - The \p block_prefix_callback_op functor must implement a member function <tt>T operator()(T block_aggregate)</tt>.
* The functor's input parameter \p block_aggregate is the same value also returned by the scan operation.
* The functor will be invoked by the first warp of threads in the block, however only the return value from
* <em>lane</em><sub>0</sub> is applied as the block-wide prefix. Can be stateful.
* - Supports non-commutative scan operators.
* - \blocked
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a single thread block that progressively
* computes an inclusive prefix max scan over multiple "tiles" of input using a
* prefix functor to maintain a running total between block-wide scans. Each tile consists
* of 128 integer items that are partitioned across 128 threads.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_scan.cuh>
*
* // A stateful callback functor that maintains a running prefix to be applied
* // during consecutive scan operations.
* struct BlockPrefixCallbackOp
* {
* // Running prefix
* int running_total;
*
* // Constructor
* __device__ BlockPrefixCallbackOp(int running_total) : running_total(running_total) {}
*
* // Callback operator to be entered by the first warp of threads in the block.
* // Thread-0 is responsible for returning a value for seeding the block-wide scan.
* __device__ int operator()(int block_aggregate)
* {
* int old_prefix = running_total;
* running_total = (block_aggregate > old_prefix) ? block_aggregate : old_prefix;
* return old_prefix;
* }
* };
*
* __global__ void ExampleKernel(int *d_data, int num_items, ...)
* {
* // Specialize BlockLoad, BlockStore, and BlockScan for a 1D block of 128 threads, 4 ints per thread
* typedef cub::BlockLoad<int*, 128, 4, BLOCK_LOAD_TRANSPOSE> BlockLoad;
* typedef cub::BlockStore<int, 128, 4, BLOCK_STORE_TRANSPOSE> BlockStore;
* typedef cub::BlockScan<int, 128> BlockScan;
*
* // Allocate aliased shared memory for BlockLoad, BlockStore, and BlockScan
* __shared__ union {
* typename BlockLoad::TempStorage load;
* typename BlockScan::TempStorage scan;
* typename BlockStore::TempStorage store;
* } temp_storage;
*
* // Initialize running total
* BlockPrefixCallbackOp prefix_op(0);
*
* // Have the block iterate over segments of items
* for (int block_offset = 0; block_offset < num_items; block_offset += 128 * 4)
* {
* // Load a segment of consecutive items that are blocked across threads
* int thread_data[4];
* BlockLoad(temp_storage.load).Load(d_data + block_offset, thread_data);
* CTA_SYNC();
*
* // Collectively compute the block-wide inclusive prefix max scan
* BlockScan(temp_storage.scan).InclusiveScan(
* thread_data, thread_data, cub::Max(), prefix_op);
* CTA_SYNC();
*
* // Store scanned items to output segment
* BlockStore(temp_storage.store).Store(d_data + block_offset, thread_data);
* CTA_SYNC();
* }
* \endcode
* \par
* Suppose the input \p d_data is <tt>0, -1, 2, -3, 4, -5, ...</tt>.
* The corresponding output for the first segment will be <tt>0, 0, 2, 2, 4, 4, ..., 510, 510</tt>.
* The output for the second segment will be <tt>512, 512, 514, 514, 516, 516, ..., 1022, 1022</tt>.
*
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam ScanOp <b>[inferred]</b> Binary scan functor type having member <tt>T operator()(const T &a, const T &b)</tt>
* \tparam BlockPrefixCallbackOp <b>[inferred]</b> Call-back functor type having member <tt>T operator()(T block_aggregate)</tt>
*/
template <
int ITEMS_PER_THREAD,
typename ScanOp,
typename BlockPrefixCallbackOp>
__device__ __forceinline__ void InclusiveScan(
T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
ScanOp scan_op, ///< [in] Binary scan functor
BlockPrefixCallbackOp &block_prefix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide prefix to be applied to the logical input sequence.
{
if (ITEMS_PER_THREAD == 1)
{
InclusiveScan(input[0], output[0], scan_op, block_prefix_callback_op);
}
else
{
// Reduce consecutive thread items in registers
T thread_prefix = internal::ThreadReduce(input, scan_op);
// Exclusive thread block-scan
ExclusiveScan(thread_prefix, thread_prefix, scan_op, block_prefix_callback_op);
// Inclusive scan in registers with prefix as seed
internal::ThreadScanInclusive(input, output, scan_op, thread_prefix);
}
}
//@} end member group
};
/**
* \example example_block_scan.cu
*/
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)