Spaces:
Runtime error
Runtime error
File size: 53,381 Bytes
be11144 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 |
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2016, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* Operations for reading linear tiles of data into the CUDA thread block.
*/
#pragma once
#include <iterator>
#include "block_exchange.cuh"
#include "../iterator/cache_modified_input_iterator.cuh"
#include "../config.cuh"
#include "../util_ptx.cuh"
#include "../util_type.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \addtogroup UtilIo
* @{
*/
/******************************************************************//**
* \name Blocked arrangement I/O (direct)
*********************************************************************/
//@{
/**
* \brief Load a linear segment of items into a blocked arrangement across the thread block.
*
* \blocked
*
* \tparam T <b>[inferred]</b> The data type to load.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam InputIteratorT <b>[inferred]</b> The random-access iterator type for input \iterator.
*/
template <
typename InputT,
int ITEMS_PER_THREAD,
typename InputIteratorT>
__device__ __forceinline__ void LoadDirectBlocked(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
// Load directly in thread-blocked order
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
items[ITEM] = block_itr[(linear_tid * ITEMS_PER_THREAD) + ITEM];
}
}
/**
* \brief Load a linear segment of items into a blocked arrangement across the thread block, guarded by range.
*
* \blocked
*
* \tparam T <b>[inferred]</b> The data type to load.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam InputIteratorT <b>[inferred]</b> The random-access iterator type for input \iterator.
*/
template <
typename InputT,
int ITEMS_PER_THREAD,
typename InputIteratorT>
__device__ __forceinline__ void LoadDirectBlocked(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items) ///< [in] Number of valid items to load
{
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
if ((linear_tid * ITEMS_PER_THREAD) + ITEM < valid_items)
{
items[ITEM] = block_itr[(linear_tid * ITEMS_PER_THREAD) + ITEM];
}
}
}
/**
* \brief Load a linear segment of items into a blocked arrangement across the thread block, guarded by range, with a fall-back assignment of out-of-bound elements..
*
* \blocked
*
* \tparam T <b>[inferred]</b> The data type to load.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam InputIteratorT <b>[inferred]</b> The random-access iterator type for input \iterator.
*/
template <
typename InputT,
typename DefaultT,
int ITEMS_PER_THREAD,
typename InputIteratorT>
__device__ __forceinline__ void LoadDirectBlocked(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items, ///< [in] Number of valid items to load
DefaultT oob_default) ///< [in] Default value to assign out-of-bound items
{
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
items[ITEM] = oob_default;
LoadDirectBlocked(linear_tid, block_itr, items, valid_items);
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document
/**
* Internal implementation for load vectorization
*/
template <
CacheLoadModifier MODIFIER,
typename T,
int ITEMS_PER_THREAD>
__device__ __forceinline__ void InternalLoadDirectBlockedVectorized(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
T *block_ptr, ///< [in] Input pointer for loading from
T (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
// Biggest memory access word that T is a whole multiple of
typedef typename UnitWord<T>::DeviceWord DeviceWord;
enum
{
TOTAL_WORDS = sizeof(items) / sizeof(DeviceWord),
VECTOR_SIZE = (TOTAL_WORDS % 4 == 0) ?
4 :
(TOTAL_WORDS % 2 == 0) ?
2 :
1,
VECTORS_PER_THREAD = TOTAL_WORDS / VECTOR_SIZE,
};
// Vector type
typedef typename CubVector<DeviceWord, VECTOR_SIZE>::Type Vector;
// Vector items
Vector vec_items[VECTORS_PER_THREAD];
// Aliased input ptr
Vector* vec_ptr = reinterpret_cast<Vector*>(block_ptr) + (linear_tid * VECTORS_PER_THREAD);
// Load directly in thread-blocked order
#pragma unroll
for (int ITEM = 0; ITEM < VECTORS_PER_THREAD; ITEM++)
{
vec_items[ITEM] = ThreadLoad<MODIFIER>(vec_ptr + ITEM);
}
// Copy
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
items[ITEM] = *(reinterpret_cast<T*>(vec_items) + ITEM);
}
}
#endif // DOXYGEN_SHOULD_SKIP_THIS
/**
* \brief Load a linear segment of items into a blocked arrangement across the thread block.
*
* \blocked
*
* The input offset (\p block_ptr + \p block_offset) must be quad-item aligned
*
* The following conditions will prevent vectorization and loading will fall back to cub::BLOCK_LOAD_DIRECT:
* - \p ITEMS_PER_THREAD is odd
* - The data type \p T is not a built-in primitive or CUDA vector type (e.g., \p short, \p int2, \p double, \p float2, etc.)
*
* \tparam T <b>[inferred]</b> The data type to load.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
*/
template <
typename T,
int ITEMS_PER_THREAD>
__device__ __forceinline__ void LoadDirectBlockedVectorized(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
T *block_ptr, ///< [in] Input pointer for loading from
T (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
InternalLoadDirectBlockedVectorized<LOAD_DEFAULT>(linear_tid, block_ptr, items);
}
//@} end member group
/******************************************************************//**
* \name Striped arrangement I/O (direct)
*********************************************************************/
//@{
/**
* \brief Load a linear segment of items into a striped arrangement across the thread block.
*
* \striped
*
* \tparam BLOCK_THREADS The thread block size in threads
* \tparam T <b>[inferred]</b> The data type to load.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam InputIteratorT <b>[inferred]</b> The random-access iterator type for input \iterator.
*/
template <
int BLOCK_THREADS,
typename InputT,
int ITEMS_PER_THREAD,
typename InputIteratorT>
__device__ __forceinline__ void LoadDirectStriped(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
items[ITEM] = block_itr[linear_tid + ITEM * BLOCK_THREADS];
}
}
/**
* \brief Load a linear segment of items into a striped arrangement across the thread block, guarded by range
*
* \striped
*
* \tparam BLOCK_THREADS The thread block size in threads
* \tparam T <b>[inferred]</b> The data type to load.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam InputIteratorT <b>[inferred]</b> The random-access iterator type for input \iterator.
*/
template <
int BLOCK_THREADS,
typename InputT,
int ITEMS_PER_THREAD,
typename InputIteratorT>
__device__ __forceinline__ void LoadDirectStriped(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items) ///< [in] Number of valid items to load
{
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
if (linear_tid + (ITEM * BLOCK_THREADS) < valid_items)
{
items[ITEM] = block_itr[linear_tid + ITEM * BLOCK_THREADS];
}
}
}
/**
* \brief Load a linear segment of items into a striped arrangement across the thread block, guarded by range, with a fall-back assignment of out-of-bound elements.
*
* \striped
*
* \tparam BLOCK_THREADS The thread block size in threads
* \tparam T <b>[inferred]</b> The data type to load.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam InputIteratorT <b>[inferred]</b> The random-access iterator type for input \iterator.
*/
template <
int BLOCK_THREADS,
typename InputT,
typename DefaultT,
int ITEMS_PER_THREAD,
typename InputIteratorT>
__device__ __forceinline__ void LoadDirectStriped(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items, ///< [in] Number of valid items to load
DefaultT oob_default) ///< [in] Default value to assign out-of-bound items
{
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
items[ITEM] = oob_default;
LoadDirectStriped<BLOCK_THREADS>(linear_tid, block_itr, items, valid_items);
}
//@} end member group
/******************************************************************//**
* \name Warp-striped arrangement I/O (direct)
*********************************************************************/
//@{
/**
* \brief Load a linear segment of items into a warp-striped arrangement across the thread block.
*
* \warpstriped
*
* \par Usage Considerations
* The number of threads in the thread block must be a multiple of the architecture's warp size.
*
* \tparam T <b>[inferred]</b> The data type to load.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam InputIteratorT <b>[inferred]</b> The random-access iterator type for input \iterator.
*/
template <
typename InputT,
int ITEMS_PER_THREAD,
typename InputIteratorT>
__device__ __forceinline__ void LoadDirectWarpStriped(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
int tid = linear_tid & (CUB_PTX_WARP_THREADS - 1);
int wid = linear_tid >> CUB_PTX_LOG_WARP_THREADS;
int warp_offset = wid * CUB_PTX_WARP_THREADS * ITEMS_PER_THREAD;
// Load directly in warp-striped order
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
new(&items[ITEM]) InputT(block_itr[warp_offset + tid + (ITEM * CUB_PTX_WARP_THREADS)]);
}
}
/**
* \brief Load a linear segment of items into a warp-striped arrangement across the thread block, guarded by range
*
* \warpstriped
*
* \par Usage Considerations
* The number of threads in the thread block must be a multiple of the architecture's warp size.
*
* \tparam T <b>[inferred]</b> The data type to load.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam InputIteratorT <b>[inferred]</b> The random-access iterator type for input \iterator.
*/
template <
typename InputT,
int ITEMS_PER_THREAD,
typename InputIteratorT>
__device__ __forceinline__ void LoadDirectWarpStriped(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items) ///< [in] Number of valid items to load
{
int tid = linear_tid & (CUB_PTX_WARP_THREADS - 1);
int wid = linear_tid >> CUB_PTX_LOG_WARP_THREADS;
int warp_offset = wid * CUB_PTX_WARP_THREADS * ITEMS_PER_THREAD;
// Load directly in warp-striped order
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
if (warp_offset + tid + (ITEM * CUB_PTX_WARP_THREADS) < valid_items)
{
new(&items[ITEM]) InputT(block_itr[warp_offset + tid + (ITEM * CUB_PTX_WARP_THREADS)]);
}
}
}
/**
* \brief Load a linear segment of items into a warp-striped arrangement across the thread block, guarded by range, with a fall-back assignment of out-of-bound elements.
*
* \warpstriped
*
* \par Usage Considerations
* The number of threads in the thread block must be a multiple of the architecture's warp size.
*
* \tparam T <b>[inferred]</b> The data type to load.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam InputIteratorT <b>[inferred]</b> The random-access iterator type for input \iterator.
*/
template <
typename InputT,
typename DefaultT,
int ITEMS_PER_THREAD,
typename InputIteratorT>
__device__ __forceinline__ void LoadDirectWarpStriped(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items, ///< [in] Number of valid items to load
DefaultT oob_default) ///< [in] Default value to assign out-of-bound items
{
// Load directly in warp-striped order
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
items[ITEM] = oob_default;
LoadDirectWarpStriped(linear_tid, block_itr, items, valid_items);
}
//@} end member group
/** @} */ // end group UtilIo
//-----------------------------------------------------------------------------
// Generic BlockLoad abstraction
//-----------------------------------------------------------------------------
/**
* \brief cub::BlockLoadAlgorithm enumerates alternative algorithms for cub::BlockLoad to read a linear segment of data from memory into a blocked arrangement across a CUDA thread block.
*/
/**
* \brief cub::BlockLoadAlgorithm enumerates alternative algorithms for cub::BlockLoad to read a linear segment of data from memory into a blocked arrangement across a CUDA thread block.
*/
enum BlockLoadAlgorithm
{
/**
* \par Overview
*
* A [<em>blocked arrangement</em>](index.html#sec5sec3) of data is read
* directly from memory.
*
* \par Performance Considerations
* - The utilization of memory transactions (coalescing) decreases as the
* access stride between threads increases (i.e., the number items per thread).
*/
BLOCK_LOAD_DIRECT,
/**
* \par Overview
*
* A [<em>blocked arrangement</em>](index.html#sec5sec3) of data is read
* from memory using CUDA's built-in vectorized loads as a coalescing optimization.
* For example, <tt>ld.global.v4.s32</tt> instructions will be generated
* when \p T = \p int and \p ITEMS_PER_THREAD % 4 == 0.
*
* \par Performance Considerations
* - The utilization of memory transactions (coalescing) remains high until the the
* access stride between threads (i.e., the number items per thread) exceeds the
* maximum vector load width (typically 4 items or 64B, whichever is lower).
* - The following conditions will prevent vectorization and loading will fall back to cub::BLOCK_LOAD_DIRECT:
* - \p ITEMS_PER_THREAD is odd
* - The \p InputIteratorTis not a simple pointer type
* - The block input offset is not quadword-aligned
* - The data type \p T is not a built-in primitive or CUDA vector type (e.g., \p short, \p int2, \p double, \p float2, etc.)
*/
BLOCK_LOAD_VECTORIZE,
/**
* \par Overview
*
* A [<em>striped arrangement</em>](index.html#sec5sec3) of data is read
* efficiently from memory and then locally transposed into a
* [<em>blocked arrangement</em>](index.html#sec5sec3).
*
* \par Performance Considerations
* - The utilization of memory transactions (coalescing) remains high regardless
* of items loaded per thread.
* - The local reordering incurs slightly longer latencies and throughput than the
* direct cub::BLOCK_LOAD_DIRECT and cub::BLOCK_LOAD_VECTORIZE alternatives.
*/
BLOCK_LOAD_TRANSPOSE,
/**
* \par Overview
*
* A [<em>warp-striped arrangement</em>](index.html#sec5sec3) of data is
* read efficiently from memory and then locally transposed into a
* [<em>blocked arrangement</em>](index.html#sec5sec3).
*
* \par Usage Considerations
* - BLOCK_THREADS must be a multiple of WARP_THREADS
*
* \par Performance Considerations
* - The utilization of memory transactions (coalescing) remains high regardless
* of items loaded per thread.
* - The local reordering incurs slightly larger latencies than the
* direct cub::BLOCK_LOAD_DIRECT and cub::BLOCK_LOAD_VECTORIZE alternatives.
* - Provisions more shared storage, but incurs smaller latencies than the
* BLOCK_LOAD_WARP_TRANSPOSE_TIMESLICED alternative.
*/
BLOCK_LOAD_WARP_TRANSPOSE,
/**
* \par Overview
*
* Like \p BLOCK_LOAD_WARP_TRANSPOSE, a [<em>warp-striped arrangement</em>](index.html#sec5sec3)
* of data is read directly from memory and then is locally transposed into a
* [<em>blocked arrangement</em>](index.html#sec5sec3). To reduce the shared memory
* requirement, only one warp's worth of shared memory is provisioned and is
* subsequently time-sliced among warps.
*
* \par Usage Considerations
* - BLOCK_THREADS must be a multiple of WARP_THREADS
*
* \par Performance Considerations
* - The utilization of memory transactions (coalescing) remains high regardless
* of items loaded per thread.
* - Provisions less shared memory temporary storage, but incurs larger
* latencies than the BLOCK_LOAD_WARP_TRANSPOSE alternative.
*/
BLOCK_LOAD_WARP_TRANSPOSE_TIMESLICED,
};
/**
* \brief The BlockLoad class provides [<em>collective</em>](index.html#sec0) data movement methods for loading a linear segment of items from memory into a [<em>blocked arrangement</em>](index.html#sec5sec3) across a CUDA thread block. ![](block_load_logo.png)
* \ingroup BlockModule
* \ingroup UtilIo
*
* \tparam InputT The data type to read into (which must be convertible from the input iterator's value type).
* \tparam BLOCK_DIM_X The thread block length in threads along the X dimension
* \tparam ITEMS_PER_THREAD The number of consecutive items partitioned onto each thread.
* \tparam ALGORITHM <b>[optional]</b> cub::BlockLoadAlgorithm tuning policy. default: cub::BLOCK_LOAD_DIRECT.
* \tparam WARP_TIME_SLICING <b>[optional]</b> Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage). (default: false)
* \tparam BLOCK_DIM_Y <b>[optional]</b> The thread block length in threads along the Y dimension (default: 1)
* \tparam BLOCK_DIM_Z <b>[optional]</b> The thread block length in threads along the Z dimension (default: 1)
* \tparam PTX_ARCH <b>[optional]</b> \ptxversion
*
* \par Overview
* - The BlockLoad class provides a single data movement abstraction that can be specialized
* to implement different cub::BlockLoadAlgorithm strategies. This facilitates different
* performance policies for different architectures, data types, granularity sizes, etc.
* - BlockLoad can be optionally specialized by different data movement strategies:
* -# <b>cub::BLOCK_LOAD_DIRECT</b>. A [<em>blocked arrangement</em>](index.html#sec5sec3)
* of data is read directly from memory. [More...](\ref cub::BlockLoadAlgorithm)
* -# <b>cub::BLOCK_LOAD_VECTORIZE</b>. A [<em>blocked arrangement</em>](index.html#sec5sec3)
* of data is read directly from memory using CUDA's built-in vectorized loads as a
* coalescing optimization. [More...](\ref cub::BlockLoadAlgorithm)
* -# <b>cub::BLOCK_LOAD_TRANSPOSE</b>. A [<em>striped arrangement</em>](index.html#sec5sec3)
* of data is read directly from memory and is then locally transposed into a
* [<em>blocked arrangement</em>](index.html#sec5sec3). [More...](\ref cub::BlockLoadAlgorithm)
* -# <b>cub::BLOCK_LOAD_WARP_TRANSPOSE</b>. A [<em>warp-striped arrangement</em>](index.html#sec5sec3)
* of data is read directly from memory and is then locally transposed into a
* [<em>blocked arrangement</em>](index.html#sec5sec3). [More...](\ref cub::BlockLoadAlgorithm)
* -# <b>cub::BLOCK_LOAD_WARP_TRANSPOSE_TIMESLICED,</b>. A [<em>warp-striped arrangement</em>](index.html#sec5sec3)
* of data is read directly from memory and is then locally transposed into a
* [<em>blocked arrangement</em>](index.html#sec5sec3) one warp at a time. [More...](\ref cub::BlockLoadAlgorithm)
* - \rowmajor
*
* \par A Simple Example
* \blockcollective{BlockLoad}
* \par
* The code snippet below illustrates the loading of a linear
* segment of 512 integers into a "blocked" arrangement across 128 threads where each
* thread owns 4 consecutive items. The load is specialized for \p BLOCK_LOAD_WARP_TRANSPOSE,
* meaning memory references are efficiently coalesced using a warp-striped access
* pattern (after which items are locally reordered among threads).
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_load.cuh>
*
* __global__ void ExampleKernel(int *d_data, ...)
* {
* // Specialize BlockLoad for a 1D block of 128 threads owning 4 integer items each
* typedef cub::BlockLoad<int, 128, 4, BLOCK_LOAD_WARP_TRANSPOSE> BlockLoad;
*
* // Allocate shared memory for BlockLoad
* __shared__ typename BlockLoad::TempStorage temp_storage;
*
* // Load a segment of consecutive items that are blocked across threads
* int thread_data[4];
* BlockLoad(temp_storage).Load(d_data, thread_data);
*
* \endcode
* \par
* Suppose the input \p d_data is <tt>0, 1, 2, 3, 4, 5, ...</tt>.
* The set of \p thread_data across the block of threads in those threads will be
* <tt>{ [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }</tt>.
*
*/
template <
typename InputT,
int BLOCK_DIM_X,
int ITEMS_PER_THREAD,
BlockLoadAlgorithm ALGORITHM = BLOCK_LOAD_DIRECT,
int BLOCK_DIM_Y = 1,
int BLOCK_DIM_Z = 1,
int PTX_ARCH = CUB_PTX_ARCH>
class BlockLoad
{
private:
/******************************************************************************
* Constants and typed definitions
******************************************************************************/
/// Constants
enum
{
/// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
};
/******************************************************************************
* Algorithmic variants
******************************************************************************/
/// Load helper
template <BlockLoadAlgorithm _POLICY, int DUMMY>
struct LoadInternal;
/**
* BLOCK_LOAD_DIRECT specialization of load helper
*/
template <int DUMMY>
struct LoadInternal<BLOCK_LOAD_DIRECT, DUMMY>
{
/// Shared memory storage layout type
typedef NullType TempStorage;
/// Linear thread-id
int linear_tid;
/// Constructor
__device__ __forceinline__ LoadInternal(
TempStorage &/*temp_storage*/,
int linear_tid)
:
linear_tid(linear_tid)
{}
/// Load a linear segment of items from memory
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
LoadDirectBlocked(linear_tid, block_itr, items);
}
/// Load a linear segment of items from memory, guarded by range
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items) ///< [in] Number of valid items to load
{
LoadDirectBlocked(linear_tid, block_itr, items, valid_items);
}
/// Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements
template <typename InputIteratorT, typename DefaultT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items, ///< [in] Number of valid items to load
DefaultT oob_default) ///< [in] Default value to assign out-of-bound items
{
LoadDirectBlocked(linear_tid, block_itr, items, valid_items, oob_default);
}
};
/**
* BLOCK_LOAD_VECTORIZE specialization of load helper
*/
template <int DUMMY>
struct LoadInternal<BLOCK_LOAD_VECTORIZE, DUMMY>
{
/// Shared memory storage layout type
typedef NullType TempStorage;
/// Linear thread-id
int linear_tid;
/// Constructor
__device__ __forceinline__ LoadInternal(
TempStorage &/*temp_storage*/,
int linear_tid)
:
linear_tid(linear_tid)
{}
/// Load a linear segment of items from memory, specialized for native pointer types (attempts vectorization)
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputT *block_ptr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
InternalLoadDirectBlockedVectorized<LOAD_DEFAULT>(linear_tid, block_ptr, items);
}
/// Load a linear segment of items from memory, specialized for native pointer types (attempts vectorization)
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
const InputT *block_ptr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
InternalLoadDirectBlockedVectorized<LOAD_DEFAULT>(linear_tid, block_ptr, items);
}
/// Load a linear segment of items from memory, specialized for native pointer types (attempts vectorization)
template <
CacheLoadModifier MODIFIER,
typename ValueType,
typename OffsetT>
__device__ __forceinline__ void Load(
CacheModifiedInputIterator<MODIFIER, ValueType, OffsetT> block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
InternalLoadDirectBlockedVectorized<MODIFIER>(linear_tid, block_itr.ptr, items);
}
/// Load a linear segment of items from memory, specialized for opaque input iterators (skips vectorization)
template <typename _InputIteratorT>
__device__ __forceinline__ void Load(
_InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
LoadDirectBlocked(linear_tid, block_itr, items);
}
/// Load a linear segment of items from memory, guarded by range (skips vectorization)
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items) ///< [in] Number of valid items to load
{
LoadDirectBlocked(linear_tid, block_itr, items, valid_items);
}
/// Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements (skips vectorization)
template <typename InputIteratorT, typename DefaultT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items, ///< [in] Number of valid items to load
DefaultT oob_default) ///< [in] Default value to assign out-of-bound items
{
LoadDirectBlocked(linear_tid, block_itr, items, valid_items, oob_default);
}
};
/**
* BLOCK_LOAD_TRANSPOSE specialization of load helper
*/
template <int DUMMY>
struct LoadInternal<BLOCK_LOAD_TRANSPOSE, DUMMY>
{
// BlockExchange utility type for keys
typedef BlockExchange<InputT, BLOCK_DIM_X, ITEMS_PER_THREAD, false, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchange;
/// Shared memory storage layout type
struct _TempStorage : BlockExchange::TempStorage
{};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
/// Thread reference to shared storage
_TempStorage &temp_storage;
/// Linear thread-id
int linear_tid;
/// Constructor
__device__ __forceinline__ LoadInternal(
TempStorage &temp_storage,
int linear_tid)
:
temp_storage(temp_storage.Alias()),
linear_tid(linear_tid)
{}
/// Load a linear segment of items from memory
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load{
{
LoadDirectStriped<BLOCK_THREADS>(linear_tid, block_itr, items);
BlockExchange(temp_storage).StripedToBlocked(items, items);
}
/// Load a linear segment of items from memory, guarded by range
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items) ///< [in] Number of valid items to load
{
LoadDirectStriped<BLOCK_THREADS>(linear_tid, block_itr, items, valid_items);
BlockExchange(temp_storage).StripedToBlocked(items, items);
}
/// Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements
template <typename InputIteratorT, typename DefaultT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items, ///< [in] Number of valid items to load
DefaultT oob_default) ///< [in] Default value to assign out-of-bound items
{
LoadDirectStriped<BLOCK_THREADS>(linear_tid, block_itr, items, valid_items, oob_default);
BlockExchange(temp_storage).StripedToBlocked(items, items);
}
};
/**
* BLOCK_LOAD_WARP_TRANSPOSE specialization of load helper
*/
template <int DUMMY>
struct LoadInternal<BLOCK_LOAD_WARP_TRANSPOSE, DUMMY>
{
enum
{
WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH)
};
// Assert BLOCK_THREADS must be a multiple of WARP_THREADS
CUB_STATIC_ASSERT((BLOCK_THREADS % WARP_THREADS == 0), "BLOCK_THREADS must be a multiple of WARP_THREADS");
// BlockExchange utility type for keys
typedef BlockExchange<InputT, BLOCK_DIM_X, ITEMS_PER_THREAD, false, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchange;
/// Shared memory storage layout type
struct _TempStorage : BlockExchange::TempStorage
{};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
/// Thread reference to shared storage
_TempStorage &temp_storage;
/// Linear thread-id
int linear_tid;
/// Constructor
__device__ __forceinline__ LoadInternal(
TempStorage &temp_storage,
int linear_tid)
:
temp_storage(temp_storage.Alias()),
linear_tid(linear_tid)
{}
/// Load a linear segment of items from memory
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load{
{
LoadDirectWarpStriped(linear_tid, block_itr, items);
BlockExchange(temp_storage).WarpStripedToBlocked(items, items);
}
/// Load a linear segment of items from memory, guarded by range
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items) ///< [in] Number of valid items to load
{
LoadDirectWarpStriped(linear_tid, block_itr, items, valid_items);
BlockExchange(temp_storage).WarpStripedToBlocked(items, items);
}
/// Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements
template <typename InputIteratorT, typename DefaultT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items, ///< [in] Number of valid items to load
DefaultT oob_default) ///< [in] Default value to assign out-of-bound items
{
LoadDirectWarpStriped(linear_tid, block_itr, items, valid_items, oob_default);
BlockExchange(temp_storage).WarpStripedToBlocked(items, items);
}
};
/**
* BLOCK_LOAD_WARP_TRANSPOSE_TIMESLICED specialization of load helper
*/
template <int DUMMY>
struct LoadInternal<BLOCK_LOAD_WARP_TRANSPOSE_TIMESLICED, DUMMY>
{
enum
{
WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH)
};
// Assert BLOCK_THREADS must be a multiple of WARP_THREADS
CUB_STATIC_ASSERT((BLOCK_THREADS % WARP_THREADS == 0), "BLOCK_THREADS must be a multiple of WARP_THREADS");
// BlockExchange utility type for keys
typedef BlockExchange<InputT, BLOCK_DIM_X, ITEMS_PER_THREAD, true, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchange;
/// Shared memory storage layout type
struct _TempStorage : BlockExchange::TempStorage
{};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
/// Thread reference to shared storage
_TempStorage &temp_storage;
/// Linear thread-id
int linear_tid;
/// Constructor
__device__ __forceinline__ LoadInternal(
TempStorage &temp_storage,
int linear_tid)
:
temp_storage(temp_storage.Alias()),
linear_tid(linear_tid)
{}
/// Load a linear segment of items from memory
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load{
{
LoadDirectWarpStriped(linear_tid, block_itr, items);
BlockExchange(temp_storage).WarpStripedToBlocked(items, items);
}
/// Load a linear segment of items from memory, guarded by range
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items) ///< [in] Number of valid items to load
{
LoadDirectWarpStriped(linear_tid, block_itr, items, valid_items);
BlockExchange(temp_storage).WarpStripedToBlocked(items, items);
}
/// Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements
template <typename InputIteratorT, typename DefaultT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items, ///< [in] Number of valid items to load
DefaultT oob_default) ///< [in] Default value to assign out-of-bound items
{
LoadDirectWarpStriped(linear_tid, block_itr, items, valid_items, oob_default);
BlockExchange(temp_storage).WarpStripedToBlocked(items, items);
}
};
/******************************************************************************
* Type definitions
******************************************************************************/
/// Internal load implementation to use
typedef LoadInternal<ALGORITHM, 0> InternalLoad;
/// Shared memory storage layout type
typedef typename InternalLoad::TempStorage _TempStorage;
/******************************************************************************
* Utility methods
******************************************************************************/
/// Internal storage allocator
__device__ __forceinline__ _TempStorage& PrivateStorage()
{
__shared__ _TempStorage private_storage;
return private_storage;
}
/******************************************************************************
* Thread fields
******************************************************************************/
/// Thread reference to shared storage
_TempStorage &temp_storage;
/// Linear thread-id
int linear_tid;
public:
/// \smemstorage{BlockLoad}
struct TempStorage : Uninitialized<_TempStorage> {};
/******************************************************************//**
* \name Collective constructors
*********************************************************************/
//@{
/**
* \brief Collective constructor using a private static allocation of shared memory as temporary storage.
*/
__device__ __forceinline__ BlockLoad()
:
temp_storage(PrivateStorage()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
/**
* \brief Collective constructor using the specified memory allocation as temporary storage.
*/
__device__ __forceinline__ BlockLoad(
TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
//@} end member group
/******************************************************************//**
* \name Data movement
*********************************************************************/
//@{
/**
* \brief Load a linear segment of items from memory.
*
* \par
* - \blocked
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates the loading of a linear
* segment of 512 integers into a "blocked" arrangement across 128 threads where each
* thread owns 4 consecutive items. The load is specialized for \p BLOCK_LOAD_WARP_TRANSPOSE,
* meaning memory references are efficiently coalesced using a warp-striped access
* pattern (after which items are locally reordered among threads).
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_load.cuh>
*
* __global__ void ExampleKernel(int *d_data, ...)
* {
* // Specialize BlockLoad for a 1D block of 128 threads owning 4 integer items each
* typedef cub::BlockLoad<int, 128, 4, BLOCK_LOAD_WARP_TRANSPOSE> BlockLoad;
*
* // Allocate shared memory for BlockLoad
* __shared__ typename BlockLoad::TempStorage temp_storage;
*
* // Load a segment of consecutive items that are blocked across threads
* int thread_data[4];
* BlockLoad(temp_storage).Load(d_data, thread_data);
*
* \endcode
* \par
* Suppose the input \p d_data is <tt>0, 1, 2, 3, 4, 5, ...</tt>.
* The set of \p thread_data across the block of threads in those threads will be
* <tt>{ [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }</tt>.
*
*/
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
InternalLoad(temp_storage, linear_tid).Load(block_itr, items);
}
/**
* \brief Load a linear segment of items from memory, guarded by range.
*
* \par
* - \blocked
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates the guarded loading of a linear
* segment of 512 integers into a "blocked" arrangement across 128 threads where each
* thread owns 4 consecutive items. The load is specialized for \p BLOCK_LOAD_WARP_TRANSPOSE,
* meaning memory references are efficiently coalesced using a warp-striped access
* pattern (after which items are locally reordered among threads).
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_load.cuh>
*
* __global__ void ExampleKernel(int *d_data, int valid_items, ...)
* {
* // Specialize BlockLoad for a 1D block of 128 threads owning 4 integer items each
* typedef cub::BlockLoad<int, 128, 4, BLOCK_LOAD_WARP_TRANSPOSE> BlockLoad;
*
* // Allocate shared memory for BlockLoad
* __shared__ typename BlockLoad::TempStorage temp_storage;
*
* // Load a segment of consecutive items that are blocked across threads
* int thread_data[4];
* BlockLoad(temp_storage).Load(d_data, thread_data, valid_items);
*
* \endcode
* \par
* Suppose the input \p d_data is <tt>0, 1, 2, 3, 4, 5, 6...</tt> and \p valid_items is \p 5.
* The set of \p thread_data across the block of threads in those threads will be
* <tt>{ [0,1,2,3], [4,?,?,?], ..., [?,?,?,?] }</tt>, with only the first two threads
* being unmasked to load portions of valid data (and other items remaining unassigned).
*
*/
template <typename InputIteratorT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items) ///< [in] Number of valid items to load
{
InternalLoad(temp_storage, linear_tid).Load(block_itr, items, valid_items);
}
/**
* \brief Load a linear segment of items from memory, guarded by range, with a fall-back assignment of out-of-bound elements
*
* \par
* - \blocked
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates the guarded loading of a linear
* segment of 512 integers into a "blocked" arrangement across 128 threads where each
* thread owns 4 consecutive items. The load is specialized for \p BLOCK_LOAD_WARP_TRANSPOSE,
* meaning memory references are efficiently coalesced using a warp-striped access
* pattern (after which items are locally reordered among threads).
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_load.cuh>
*
* __global__ void ExampleKernel(int *d_data, int valid_items, ...)
* {
* // Specialize BlockLoad for a 1D block of 128 threads owning 4 integer items each
* typedef cub::BlockLoad<int, 128, 4, BLOCK_LOAD_WARP_TRANSPOSE> BlockLoad;
*
* // Allocate shared memory for BlockLoad
* __shared__ typename BlockLoad::TempStorage temp_storage;
*
* // Load a segment of consecutive items that are blocked across threads
* int thread_data[4];
* BlockLoad(temp_storage).Load(d_data, thread_data, valid_items, -1);
*
* \endcode
* \par
* Suppose the input \p d_data is <tt>0, 1, 2, 3, 4, 5, 6...</tt>,
* \p valid_items is \p 5, and the out-of-bounds default is \p -1.
* The set of \p thread_data across the block of threads in those threads will be
* <tt>{ [0,1,2,3], [4,-1,-1,-1], ..., [-1,-1,-1,-1] }</tt>, with only the first two threads
* being unmasked to load portions of valid data (and other items are assigned \p -1)
*
*/
template <typename InputIteratorT, typename DefaultT>
__device__ __forceinline__ void Load(
InputIteratorT block_itr, ///< [in] The thread block's base input iterator for loading from
InputT (&items)[ITEMS_PER_THREAD], ///< [out] Data to load
int valid_items, ///< [in] Number of valid items to load
DefaultT oob_default) ///< [in] Default value to assign out-of-bound items
{
InternalLoad(temp_storage, linear_tid).Load(block_itr, items, valid_items, oob_default);
}
//@} end member group
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)
|