File size: 8,297 Bytes
29a4916
 
 
 
 
30ded18
2479715
29a4916
2479715
c1b896a
29a4916
 
 
 
 
 
 
 
 
 
 
 
041c78a
29a4916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3617552
29a4916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1b896a
 
 
 
 
 
 
 
 
02e8f92
409dc93
a3031df
e792874
1c3c0d9
041c78a
 
 
 
 
 
29a4916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527204a
d1b932e
 
7e9a1f7
 
041c78a
 
d1b932e
 
7e9a1f7
 
 
 
 
d1b932e
29a4916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527204a
3617552
 
 
 
 
 
 
29a4916
 
 
 
 
 
ae140ff
29a4916
ae140ff
29a4916
 
 
 
d1b932e
041c78a
d1b932e
 
 
041c78a
d1b932e
 
657eada
d1b932e
29a4916
 
d1b932e
 
29a4916
 
d1b932e
041c78a
29a4916
 
 
 
 
 
 
 
 
041c78a
29a4916
 
 
 
 
 
 
 
527204a
29a4916
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import argparse
import csv
import sys
from pathlib import Path

import gradio as gr
import torch
import yaml
from PIL import Image
from subprocess import call

ROOT_PATH = sys.path[0]  # 根目录

# 模型路径
model_path = "ultralytics/yolov5"
# 模型名称临时变量
model_name_tmp = ""
# 设备临时变量
device_tmp = ""
# 文件后缀
suffix_list = [".csv", ".yaml"]
def parse_args(known=False):
    parser = argparse.ArgumentParser(description="Gradio LIVE")
    parser.add_argument(
        "--model_name", "-mn", default="yolov5s", type=str, help="model name"
    )
    parser.add_argument(
        "--model_cfg",
        "-mc",
        default="./model_config/model_name_p5_all.yaml",
        type=str,
        help="model config",
    )
    parser.add_argument(
        "--cls_name",
        "-cls",
        default="./cls_name/cls_name.yaml",
        type=str,
        help="cls name",
    )
    parser.add_argument(
        "--nms_conf",
        "-conf",
        default=0.5,
        type=float,
        help="model NMS confidence threshold",
    )
    parser.add_argument(
        "--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold"
    )

    parser.add_argument(
        "--label_dnt_show",
        "-lds",
        action="store_false",
        default=True,
        help="label show",
    )
    parser.add_argument(
        "--device",
        "-dev",
        default="cpu",
        type=str,
        help="cuda or cpu, hugging face only cpu",
    )
    parser.add_argument(
        "--inference_size", "-isz", default=640, type=int, help="model inference size"
    )

    args = parser.parse_known_args()[0] if known else parser.parse_args()
    return args
#  模型加载
def model_loading(model_name, device):

    # 加载本地模型
    model = torch.hub.load(model_path, model_name, force_reload=True, device=device)

    return model
# 检测信息
def export_json(results, model, img_size):

    return [
        [
            {
                "id": int(i),
                "class": int(result[i][5]),
                "class_name": model.model.names[int(result[i][5])],
                "normalized_box": {
                    "x0": round(result[i][:4].tolist()[0], 6),
                    "y0": round(result[i][:4].tolist()[1], 6),
                    "x1": round(result[i][:4].tolist()[2], 6),
                    "y1": round(result[i][:4].tolist()[3], 6),
                },
                "confidence": round(float(result[i][4]), 2),
                "fps": round(1000 / float(results.t[1]), 2),
                "width": img_size[0],
                "height": img_size[1],
            }
            for i in range(len(result))
        ]
        for result in results.xyxyn
    ]
def yolo_det(img, experiment_id, device=None, model_name=None, inference_size=None, conf=None, iou=None, label_opt=None, model_cls=None):

    global model, model_name_tmp, device_tmp

    if model_name_tmp != model_name:
        # 模型判断,避免反复加载
        model_name_tmp = model_name
        model = model_loading(model_name_tmp, device)
    elif device_tmp != device:
        device_tmp = device
        model = model_loading(model_name_tmp, device)

    # -----------模型调参-----------
    model.conf = conf  # NMS 置信度阈值
    model.iou = iou  # NMS IOU阈值
    model.max_det = 1000  # 最大检测框数
    model.classes = model_cls  # 模型类别

    results = model(img, size=inference_size)  # 检测
    results.render(labels=label_opt)  # 渲染

    det_img = Image.fromarray(results.imgs[0])  # 检测图片

    det_json = export_json(results, model, img.size)[0]  # 检测信息

    return det_img, det_json


def run_cmd(command):
    try:
        print(command)
        call(command, shell=True)
    except KeyboardInterrupt:
        print("Process interrupted")
        sys.exit(1)

run_cmd("gcc --version")
run_cmd("pwd")
run_cmd("ls")
run_cmd("git submodule update --init --recursive")
run_cmd("python setup.py install --user")
run_cmd("ls")






# yaml文件解析
def yaml_parse(file_path):
    return yaml.safe_load(open(file_path, "r", encoding="utf-8").read())


# yaml csv 文件解析
def yaml_csv(file_path, file_tag):
    file_suffix = Path(file_path).suffix
    if file_suffix == suffix_list[0]:
        # 模型名称
        file_names = [i[0] for i in list(csv.reader(open(file_path)))]  # csv版
    elif file_suffix == suffix_list[1]:
        # 模型名称
        file_names = yaml_parse(file_path).get(file_tag)  # yaml版
    else:
        print(f"{file_path}格式不正确!程序退出!")
        sys.exit()

    return file_names


def main(args):
    gr.close_all()

    global model

    slider_step = 0.05  # 滑动步长

    nms_conf = args.nms_conf
    nms_iou = args.nms_iou
    label_opt = args.label_dnt_show
    model_name = args.model_name
    model_cfg = args.model_cfg
    cls_name = args.cls_name
    device = args.device
    inference_size = args.inference_size

    # 模型加载
    model = model_loading(model_name, device)

    model_names = yaml_csv(model_cfg, "model_names")
    model_cls_name = yaml_csv(cls_name, "model_cls_name")


    # -------------------Inputs-------------------
    inputs_img = gr.inputs.Image(type="pil", label="Input Image")
    experiment_id = gr.inputs.Radio(
        choices=[
            "add [1, 1, 1, 1, 1] total 5 paths",
            "add [1, 1, 1, 1, 1, 1, 1, 1] total 8 paths",
            "add [1,2,4,8,16,32, ...] total 128 paths",
            "add [1,2,4,8,16,32, ...] total 256 paths"], type="value", default="add [1,1,1,1,1] paths", label="Path Adding Scheduler"
    )





    device = gr.inputs.Dropdown(
        choices=["cpu"], default=device, type="value", label="设备"
    )
    inputs_model = gr.inputs.Dropdown(
        choices=model_names, default=model_name, type="value", label="模型"
    )
    inputs_size = gr.inputs.Radio(
        choices=[320, 640], default=inference_size, label="推理尺寸"
    )
    input_conf = gr.inputs.Slider(
        0, 1, step=slider_step, default=nms_conf, label="置信度阈值"
    )
    inputs_iou = gr.inputs.Slider(
        0, 1, step=slider_step, default=nms_iou, label="IoU 阈值"
    )
    inputs_label = gr.inputs.Checkbox(default=label_opt, label="标签显示")
    inputs_clsName = gr.inputs.CheckboxGroup(
        choices=model_cls_name, default=model_cls_name, type="index", label="类别"
    )

    # 输入参数
    inputs = [
        inputs_img,  # 输入图片
        experiment_id, # path adding scheduler
        # device,  # 设备
        # inputs_model,  # 模型
        # inputs_size,  # 推理尺寸
        # input_conf,  # 置信度阈值
        # inputs_iou,  # IoU阈值
        # inputs_label,  # 标签显示
        # inputs_clsName,  # 类别
    ]
    # 输出参数
    outputs = gr.outputs.Image(type="pil", label="检测图片")
    outputs02 = gr.outputs.JSON(label="检测信息")

    # 标题
    title = "LIVE: Towards Layer-wise Image Vectorization"
    # 描述
    description = "<div align='center'>(CVPR 2022 Oral Presentation)</div>"

    # 示例图片
    examples = [
        [
            "./examples/1.png",
            "add [1, 1, 1, 1, 1] total 5 paths",
        ],
        [
            "./examples/2.png",
            "add [1, 1, 1, 1, 1] total 5 paths",
        ],
        [
            "./examples/3.jpg",
            "add [1,2,4,8,16,32, ...] total 128 paths",
        ],
        [
            "./examples/4.png",
            "add [1,2,4,8,16,32, ...] total 256 paths",
        ],
        [
            "./examples/5.png",
            "add [1, 1, 1, 1, 1] total 5 paths",
        ],
    ]

    # 接口
    gr.Interface(
        fn=yolo_det,
        inputs=inputs,
        outputs=[outputs, outputs02],
        title=title,
        description=description,
        examples=examples,
        theme="seafoam",
        # live=True, # 实时变更输出
        flagging_dir="run"  # 输出目录
        # ).launch(inbrowser=True, auth=['admin', 'admin'])
    ).launch(
        inbrowser=True,  # 自动打开默认浏览器
        show_tips=True,  # 自动显示gradio最新功能
        # favicon_path="./icon/logo.ico",
    )


if __name__ == "__main__":
    args = parse_args()
    main(args)