File size: 25,925 Bytes
be11144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
"""
Here are some use cases:
python main.py --config config/all.yaml --experiment experiment_8x1 --signature demo1 --target data/demo1.png
"""
import pydiffvg
import torch
import cv2
import matplotlib.pyplot as plt
import random
import argparse
import math
import errno
from tqdm import tqdm
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR
from torch.nn.functional import adaptive_avg_pool2d
import warnings
warnings.filterwarnings("ignore")

import PIL
import PIL.Image
import os
import os.path as osp
import numpy as np
import numpy.random as npr
import shutil
import copy
# import skfmm
from xing_loss import xing_loss

import yaml
from easydict import EasyDict as edict


pydiffvg.set_print_timing(False)
gamma = 1.0

##########
# helper #
##########

from utils import \
    get_experiment_id, \
    get_path_schedule, \
    edict_2_dict, \
    check_and_create_dir

def get_bezier_circle(radius=1, segments=4, bias=None):
    points = []
    if bias is None:
        bias = (random.random(), random.random())
    avg_degree = 360 / (segments*3)
    for i in range(0, segments*3):
        point = (np.cos(np.deg2rad(i * avg_degree)),
                    np.sin(np.deg2rad(i * avg_degree)))
        points.append(point)
    points = torch.tensor(points)
    points = (points)*radius + torch.tensor(bias).unsqueeze(dim=0)
    points = points.type(torch.FloatTensor)
    return points

def get_sdf(phi, method='skfmm', **kwargs):
    if method == 'skfmm':
        import skfmm
        phi = (phi-0.5)*2
        if (phi.max() <= 0) or (phi.min() >= 0):
            return np.zeros(phi.shape).astype(np.float32)
        sd = skfmm.distance(phi, dx=1)

        flip_negative = kwargs.get('flip_negative', True)
        if flip_negative:
            sd = np.abs(sd)

        truncate = kwargs.get('truncate', 10)
        sd = np.clip(sd, -truncate, truncate)
        # print(f"max sd value is: {sd.max()}")

        zero2max = kwargs.get('zero2max', True)
        if zero2max and flip_negative:
            sd = sd.max() - sd
        elif zero2max:
            raise ValueError

        normalize = kwargs.get('normalize', 'sum')
        if normalize == 'sum':
            sd /= sd.sum()
        elif normalize == 'to1':
            sd /= sd.max()
        return sd

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--debug', action='store_true', default=False)
    parser.add_argument("--config", type=str)
    parser.add_argument("--experiment", type=str)
    parser.add_argument("--seed", type=int)
    parser.add_argument("--target", type=str, help="target image path")
    parser.add_argument('--log_dir', metavar='DIR', default="log/debug")
    parser.add_argument('--initial', type=str, default="random", choices=['random', 'circle'])
    parser.add_argument('--signature', nargs='+', type=str)
    parser.add_argument('--seginit', nargs='+', type=str)
    parser.add_argument("--num_segments", type=int, default=4)
    # parser.add_argument("--num_paths", type=str, default="1,1,1")
    # parser.add_argument("--num_iter", type=int, default=500)
    # parser.add_argument('--free', action='store_true')
    # Please ensure that image resolution is divisible by pool_size; otherwise the performance would drop a lot.
    # parser.add_argument('--pool_size', type=int, default=40, help="the pooled image size for next path initialization")
    # parser.add_argument('--save_loss', action='store_true')
    # parser.add_argument('--save_init', action='store_true')
    # parser.add_argument('--save_image', action='store_true')
    # parser.add_argument('--save_video', action='store_true')
    # parser.add_argument('--print_weight', action='store_true')
    # parser.add_argument('--circle_init_radius',  type=float)
    cfg = edict()
    args = parser.parse_args()
    cfg.debug = args.debug
    cfg.config = args.config
    cfg.experiment = args.experiment
    cfg.seed = args.seed
    cfg.target = args.target
    cfg.log_dir = args.log_dir
    cfg.initial = args.initial
    cfg.signature = args.signature
    # set cfg num_segments in command
    cfg.num_segments = args.num_segments
    if args.seginit is not None:
        cfg.seginit = edict()
        cfg.seginit.type = args.seginit[0]
        if cfg.seginit.type == 'circle':
            cfg.seginit.radius = float(args.seginit[1])
    return cfg

def ycrcb_conversion(im, format='[bs x 3 x 2D]', reverse=False):
    mat = torch.FloatTensor([
        [ 65.481/255, 128.553/255,  24.966/255], # ranged_from [0, 219/255]
        [-37.797/255, -74.203/255, 112.000/255], # ranged_from [-112/255, 112/255]
        [112.000/255, -93.786/255, -18.214/255], # ranged_from [-112/255, 112/255]
    ]).to(im.device)

    if reverse:
        mat = mat.inverse()

    if format == '[bs x 3 x 2D]':
        im = im.permute(0, 2, 3, 1)
        im = torch.matmul(im, mat.T)
        im = im.permute(0, 3, 1, 2).contiguous()
        return im
    elif format == '[2D x 3]':
        im = torch.matmul(im, mat.T)
        return im
    else:
        raise ValueError

class random_coord_init():
    def __init__(self, canvas_size):
        self.canvas_size = canvas_size
    def __call__(self):
        h, w = self.canvas_size
        return [npr.uniform(0, 1)*w, npr.uniform(0, 1)*h]

class naive_coord_init():
    def __init__(self, pred, gt, format='[bs x c x 2D]', replace_sampling=True):
        if isinstance(pred, torch.Tensor):
            pred = pred.detach().cpu().numpy()
        if isinstance(gt, torch.Tensor):
            gt = gt.detach().cpu().numpy()

        if format == '[bs x c x 2D]':
            self.map = ((pred[0] - gt[0])**2).sum(0)
        elif format == ['[2D x c]']:
            self.map = ((pred - gt)**2).sum(-1)
        else:
            raise ValueError
        self.replace_sampling = replace_sampling

    def __call__(self):
        coord = np.where(self.map == self.map.max())
        coord_h, coord_w = coord[0][0], coord[1][0]
        if self.replace_sampling:
            self.map[coord_h, coord_w] = -1
        return [coord_w, coord_h]


class sparse_coord_init():
    def __init__(self, pred, gt, format='[bs x c x 2D]', quantile_interval=200, nodiff_thres=0.1):
        if isinstance(pred, torch.Tensor):
            pred = pred.detach().cpu().numpy()
        if isinstance(gt, torch.Tensor):
            gt = gt.detach().cpu().numpy()
        if format == '[bs x c x 2D]':
            self.map = ((pred[0] - gt[0])**2).sum(0)
            self.reference_gt = copy.deepcopy(
                np.transpose(gt[0], (1, 2, 0)))
        elif format == ['[2D x c]']:
            self.map = (np.abs(pred - gt)).sum(-1)
            self.reference_gt = copy.deepcopy(gt[0])
        else:
            raise ValueError
        # OptionA: Zero too small errors to avoid the error too small deadloop
        self.map[self.map < nodiff_thres] = 0
        quantile_interval = np.linspace(0., 1., quantile_interval)
        quantized_interval = np.quantile(self.map, quantile_interval)
        # remove redundant
        quantized_interval = np.unique(quantized_interval)
        quantized_interval = sorted(quantized_interval[1:-1])
        self.map = np.digitize(self.map, quantized_interval, right=False)
        self.map = np.clip(self.map, 0, 255).astype(np.uint8)
        self.idcnt = {}
        for idi in sorted(np.unique(self.map)):
            self.idcnt[idi] = (self.map==idi).sum()
        self.idcnt.pop(min(self.idcnt.keys()))
        # remove smallest one to remove the correct region
    def __call__(self):
        if len(self.idcnt) == 0:
            h, w = self.map.shape
            return [npr.uniform(0, 1)*w, npr.uniform(0, 1)*h]
        target_id = max(self.idcnt, key=self.idcnt.get)
        _, component, cstats, ccenter = cv2.connectedComponentsWithStats(
            (self.map==target_id).astype(np.uint8), connectivity=4)
        # remove cid = 0, it is the invalid area
        csize = [ci[-1] for ci in cstats[1:]]
        target_cid = csize.index(max(csize))+1
        center = ccenter[target_cid][::-1]
        coord = np.stack(np.where(component == target_cid)).T
        dist = np.linalg.norm(coord-center, axis=1)
        target_coord_id = np.argmin(dist)
        coord_h, coord_w = coord[target_coord_id]
        # replace_sampling
        self.idcnt[target_id] -= max(csize)
        if self.idcnt[target_id] == 0:
            self.idcnt.pop(target_id)
        self.map[component == target_cid] = 0
        return [coord_w, coord_h]


def init_shapes(num_paths,
                num_segments,
                canvas_size,
                seginit_cfg,
                shape_cnt,
                pos_init_method=None,
                trainable_stroke=False,
                **kwargs):
    shapes = []
    shape_groups = []
    h, w = canvas_size

    # change path init location
    if pos_init_method is None:
        pos_init_method = random_coord_init(canvas_size=canvas_size)

    for i in range(num_paths):
        num_control_points = [2] * num_segments

        if seginit_cfg.type=="random":
            points = []
            p0 = pos_init_method()
            color_ref = copy.deepcopy(p0)
            points.append(p0)
            for j in range(num_segments):
                radius = seginit_cfg.radius
                p1 = (p0[0] + radius * npr.uniform(-0.5, 0.5),
                      p0[1] + radius * npr.uniform(-0.5, 0.5))
                p2 = (p1[0] + radius * npr.uniform(-0.5, 0.5),
                      p1[1] + radius * npr.uniform(-0.5, 0.5))
                p3 = (p2[0] + radius * npr.uniform(-0.5, 0.5),
                      p2[1] + radius * npr.uniform(-0.5, 0.5))
                points.append(p1)
                points.append(p2)
                if j < num_segments - 1:
                    points.append(p3)
                    p0 = p3
            points = torch.FloatTensor(points)

        # circle points initialization
        elif seginit_cfg.type=="circle":
            radius = seginit_cfg.radius
            if radius is None:
                radius = npr.uniform(0.5, 1)
            center = pos_init_method()
            color_ref = copy.deepcopy(center)
            points = get_bezier_circle(
                radius=radius, segments=num_segments,
                bias=center)

        path = pydiffvg.Path(num_control_points = torch.LongTensor(num_control_points),
                             points = points,
                             stroke_width = torch.tensor(0.0),
                             is_closed = True)
        shapes.append(path)
        # !!!!!!problem is here. the shape group shape_ids is wrong

        if 'gt' in kwargs:
            wref, href = color_ref
            wref = max(0, min(int(wref), w-1))
            href = max(0, min(int(href), h-1))
            fill_color_init = list(gt[0, :, href, wref]) + [1.]
            fill_color_init = torch.FloatTensor(fill_color_init)
            stroke_color_init = torch.FloatTensor(npr.uniform(size=[4]))
        else:
            fill_color_init = torch.FloatTensor(npr.uniform(size=[4]))
            stroke_color_init = torch.FloatTensor(npr.uniform(size=[4]))

        path_group = pydiffvg.ShapeGroup(
            shape_ids = torch.LongTensor([shape_cnt+i]),
            fill_color = fill_color_init,
            stroke_color = stroke_color_init,
        )
        shape_groups.append(path_group)

    point_var = []
    color_var = []

    for path in shapes:
        path.points.requires_grad = True
        point_var.append(path.points)
    for group in shape_groups:
        group.fill_color.requires_grad = True
        color_var.append(group.fill_color)

    if trainable_stroke:
        stroke_width_var = []
        stroke_color_var = []
        for path in shapes:
            path.stroke_width.requires_grad = True
            stroke_width_var.append(path.stroke_width)
        for group in shape_groups:
            group.stroke_color.requires_grad = True
            stroke_color_var.append(group.stroke_color)
        return shapes, shape_groups, point_var, color_var, stroke_width_var, stroke_color_var
    else:
        return shapes, shape_groups, point_var, color_var

class linear_decay_lrlambda_f(object):
    def __init__(self, decay_every, decay_ratio):
        self.decay_every = decay_every
        self.decay_ratio = decay_ratio

    def __call__(self, n):
        decay_time = n//self.decay_every
        decay_step = n %self.decay_every
        lr_s = self.decay_ratio**decay_time
        lr_e = self.decay_ratio**(decay_time+1)
        r = decay_step/self.decay_every
        lr = lr_s * (1-r) + lr_e * r
        return lr


if __name__ == "__main__":

    ###############
    # make config #
    ###############

    cfg_arg = parse_args()
    with open(cfg_arg.config, 'r') as f:
        cfg = yaml.load(f, Loader=yaml.FullLoader)
    cfg_default = edict(cfg['default'])
    cfg = edict(cfg[cfg_arg.experiment])
    cfg.update(cfg_default)
    cfg.update(cfg_arg)
    cfg.exid = get_experiment_id(cfg.debug)

    cfg.experiment_dir = \
        osp.join(cfg.log_dir, '{}_{}'.format(cfg.exid, '_'.join(cfg.signature)))
    configfile = osp.join(cfg.experiment_dir, 'config.yaml')
    check_and_create_dir(configfile)
    with open(osp.join(configfile), 'w') as f:
        yaml.dump(edict_2_dict(cfg), f)

    # Use GPU if available
    pydiffvg.set_use_gpu(torch.cuda.is_available())
    device = pydiffvg.get_device()

    gt = np.array(PIL.Image.open(cfg.target))
    print(f"Input image shape is: {gt.shape}")
    if len(gt.shape) == 2:
        print("Converting the gray-scale image to RGB.")
        gt = gt.unsqueeze(dim=-1).repeat(1,1,3)
    if gt.shape[2] == 4:
        print("Input image includes alpha channel, simply dropout alpha channel.")
        gt = gt[:, :, :3]
    gt = (gt/255).astype(np.float32)
    gt = torch.FloatTensor(gt).permute(2, 0, 1)[None].to(device)
    if cfg.use_ycrcb:
        gt = ycrcb_conversion(gt)
    h, w = gt.shape[2:]

    path_schedule = get_path_schedule(**cfg.path_schedule)

    if cfg.seed is not None:
        random.seed(cfg.seed)
        npr.seed(cfg.seed)
        torch.manual_seed(cfg.seed)
    render = pydiffvg.RenderFunction.apply

    shapes_record, shape_groups_record = [], []

    region_loss = None
    loss_matrix = []

    para_point, para_color = {}, {}
    if cfg.trainable.stroke:
        para_stroke_width, para_stroke_color = {}, {}

    pathn_record = []
    # Background
    if cfg.trainable.bg:
        # meancolor = gt.mean([2, 3])[0]
        para_bg = torch.tensor([1., 1., 1.], requires_grad=True, device=device)
    else:
        if cfg.use_ycrcb:
            para_bg = torch.tensor([219/255, 0, 0], requires_grad=False, device=device)
        else:
            para_bg = torch.tensor([1., 1., 1.], requires_grad=False, device=device)

    ##################
    # start_training #
    ##################

    loss_weight = None
    loss_weight_keep = 0
    if cfg.coord_init.type == 'naive':
        pos_init_method = naive_coord_init(
            para_bg.view(1, -1, 1, 1).repeat(1, 1, h, w), gt)
    elif cfg.coord_init.type == 'sparse':
        pos_init_method = sparse_coord_init(
            para_bg.view(1, -1, 1, 1).repeat(1, 1, h, w), gt)
    elif cfg.coord_init.type == 'random':
        pos_init_method = random_coord_init([h, w])
    else:
        raise ValueError

    lrlambda_f = linear_decay_lrlambda_f(cfg.num_iter, 0.4)
    optim_schedular_dict = {}

    for path_idx, pathn in enumerate(path_schedule):
        loss_list = []
        print("=> Adding [{}] paths, [{}] ...".format(pathn, cfg.seginit.type))
        pathn_record.append(pathn)
        pathn_record_str = '-'.join([str(i) for i in pathn_record])

        # initialize new shapes related stuffs.
        if cfg.trainable.stroke:
            shapes, shape_groups, point_var, color_var, stroke_width_var, stroke_color_var = init_shapes(
                pathn, cfg.num_segments, (h, w),
                cfg.seginit, len(shapes_record),
                pos_init_method,
                trainable_stroke=True,
                gt=gt, )
            para_stroke_width[path_idx] = stroke_width_var
            para_stroke_color[path_idx] = stroke_color_var
        else:
            shapes, shape_groups, point_var, color_var = init_shapes(
                pathn, cfg.num_segments, (h, w),
                cfg.seginit, len(shapes_record),
                pos_init_method,
                trainable_stroke=False,
                gt=gt, )

        shapes_record += shapes
        shape_groups_record += shape_groups

        if cfg.save.init:
            filename = os.path.join(
                cfg.experiment_dir, "svg-init",
                "{}-init.svg".format(pathn_record_str))
            check_and_create_dir(filename)
            pydiffvg.save_svg(
                filename, w, h,
                shapes_record, shape_groups_record)

        para = {}
        if (cfg.trainable.bg) and (path_idx == 0):
            para['bg'] = [para_bg]
        para['point'] = point_var
        para['color'] = color_var
        if cfg.trainable.stroke:
            para['stroke_width'] = stroke_width_var
            para['stroke_color'] = stroke_color_var

        pg = [{'params' : para[ki], 'lr' : cfg.lr_base[ki]} for ki in sorted(para.keys())]
        optim = torch.optim.Adam(pg)

        if cfg.trainable.record:
            scheduler = LambdaLR(
                optim, lr_lambda=lrlambda_f, last_epoch=-1)
        else:
            scheduler = LambdaLR(
                optim, lr_lambda=lrlambda_f, last_epoch=cfg.num_iter)
        optim_schedular_dict[path_idx] = (optim, scheduler)

        # Inner loop training
        t_range = tqdm(range(cfg.num_iter))
        for t in t_range:

            for _, (optim, _) in optim_schedular_dict.items():
                optim.zero_grad()

            # Forward pass: render the image.
            scene_args = pydiffvg.RenderFunction.serialize_scene(
                w, h, shapes_record, shape_groups_record)
            img = render(w, h, 2, 2, t, None, *scene_args)

            # Compose img with white background
            img = img[:, :, 3:4] * img[:, :, :3] + \
                para_bg * (1 - img[:, :, 3:4])

            if cfg.save.video:
                filename = os.path.join(
                    cfg.experiment_dir, "video-png",
                    "{}-iter{}.png".format(pathn_record_str, t))
                check_and_create_dir(filename)
                if cfg.use_ycrcb:
                    imshow = ycrcb_conversion(
                        img, format='[2D x 3]', reverse=True).detach().cpu()
                else:
                    imshow = img.detach().cpu()
                pydiffvg.imwrite(imshow, filename, gamma=gamma)

            x = img.unsqueeze(0).permute(0, 3, 1, 2) # HWC -> NCHW

            if cfg.use_ycrcb:
                color_reweight = torch.FloatTensor([255/219, 255/224, 255/255]).to(device)
                loss = ((x-gt)*(color_reweight.view(1, -1, 1, 1)))**2
            else:
                loss = ((x-gt)**2)

            if cfg.loss.use_l1_loss:
                loss = abs(x-gt)

            if cfg.loss.use_distance_weighted_loss:
                if cfg.use_ycrcb:
                    raise ValueError
                shapes_forsdf = copy.deepcopy(shapes)
                shape_groups_forsdf = copy.deepcopy(shape_groups)
                for si in shapes_forsdf:
                    si.stroke_width = torch.FloatTensor([0]).to(device)
                for sg_idx, sgi in enumerate(shape_groups_forsdf):
                    sgi.fill_color = torch.FloatTensor([1, 1, 1, 1]).to(device)
                    sgi.shape_ids = torch.LongTensor([sg_idx]).to(device)

                sargs_forsdf = pydiffvg.RenderFunction.serialize_scene(
                    w, h, shapes_forsdf, shape_groups_forsdf)
                with torch.no_grad():
                    im_forsdf = render(w, h, 2, 2, 0, None, *sargs_forsdf)
                # use alpha channel is a trick to get 0-1 image
                im_forsdf = (im_forsdf[:, :, 3]).detach().cpu().numpy()
                loss_weight = get_sdf(im_forsdf, normalize='to1')
                loss_weight += loss_weight_keep
                loss_weight = np.clip(loss_weight, 0, 1)
                loss_weight = torch.FloatTensor(loss_weight).to(device)

            if cfg.save.loss:
                save_loss = loss.squeeze(dim=0).mean(dim=0,keepdim=False).cpu().detach().numpy()
                save_weight = loss_weight.cpu().detach().numpy()
                save_weighted_loss = save_loss*save_weight
                # normalize to [0,1]
                save_loss = (save_loss - np.min(save_loss))/np.ptp(save_loss)
                save_weight = (save_weight - np.min(save_weight))/np.ptp(save_weight)
                save_weighted_loss = (save_weighted_loss - np.min(save_weighted_loss))/np.ptp(save_weighted_loss)

                # save
                plt.imshow(save_loss, cmap='Reds')
                plt.axis('off')
                # plt.colorbar()
                filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-mseloss.png".format(pathn_record_str, t))
                check_and_create_dir(filename)
                plt.savefig(filename, dpi=800)
                plt.close()

                plt.imshow(save_weight, cmap='Greys')
                plt.axis('off')
                # plt.colorbar()
                filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-sdfweight.png".format(pathn_record_str, t))
                plt.savefig(filename, dpi=800)
                plt.close()

                plt.imshow(save_weighted_loss, cmap='Reds')
                plt.axis('off')
                # plt.colorbar()
                filename = os.path.join(cfg.experiment_dir, "loss", "{}-iter{}-weightedloss.png".format(pathn_record_str, t))
                plt.savefig(filename, dpi=800)
                plt.close()





            if loss_weight is None:
                loss = loss.sum(1).mean()
            else:
                loss = (loss.sum(1)*loss_weight).mean()

            # if (cfg.loss.bis_loss_weight is not None)  and (cfg.loss.bis_loss_weight > 0):
            #     loss_bis = bezier_intersection_loss(point_var[0]) * cfg.loss.bis_loss_weight
            #     loss = loss + loss_bis
            if (cfg.loss.xing_loss_weight is not None) \
                    and (cfg.loss.xing_loss_weight > 0):
                loss_xing = xing_loss(point_var) * cfg.loss.xing_loss_weight
                loss = loss + loss_xing


            loss_list.append(loss.item())
            t_range.set_postfix({'loss': loss.item()})
            loss.backward()

            # step
            for _, (optim, scheduler) in optim_schedular_dict.items():
                optim.step()
                scheduler.step()

            for group in shape_groups_record:
                group.fill_color.data.clamp_(0.0, 1.0)

        if cfg.loss.use_distance_weighted_loss:
            loss_weight_keep = loss_weight.detach().cpu().numpy() * 1

        if not cfg.trainable.record:
            for _, pi in pg.items():
                for ppi in pi:
                    pi.require_grad = False
            optim_schedular_dict = {}

        if cfg.save.image:
            filename = os.path.join(
                cfg.experiment_dir, "demo-png", "{}.png".format(pathn_record_str))
            check_and_create_dir(filename)
            if cfg.use_ycrcb:
                imshow = ycrcb_conversion(
                    img, format='[2D x 3]', reverse=True).detach().cpu()
            else:
                imshow = img.detach().cpu()
            pydiffvg.imwrite(imshow, filename, gamma=gamma)

        if cfg.save.output:
            filename = os.path.join(
                cfg.experiment_dir, "output-svg", "{}.svg".format(pathn_record_str))
            check_and_create_dir(filename)
            pydiffvg.save_svg(filename, w, h, shapes_record, shape_groups_record)

        loss_matrix.append(loss_list)

        # calculate the pixel loss
        # pixel_loss = ((x-gt)**2).sum(dim=1, keepdim=True).sqrt_() # [N,1,H, W]
        # region_loss = adaptive_avg_pool2d(pixel_loss, cfg.region_loss_pool_size)
        # loss_weight = torch.softmax(region_loss.reshape(1, 1, -1), dim=-1)\
        #     .reshape_as(region_loss)

        pos_init_method = naive_coord_init(x, gt)

        if cfg.coord_init.type == 'naive':
            pos_init_method = naive_coord_init(x, gt)
        elif cfg.coord_init.type == 'sparse':
            pos_init_method = sparse_coord_init(x, gt)
        elif cfg.coord_init.type == 'random':
            pos_init_method = random_coord_init([h, w])
        else:
            raise ValueError

        if cfg.save.video:
            print("saving iteration video...")
            img_array = []
            for ii in range(0, cfg.num_iter):
                filename = os.path.join(
                    cfg.experiment_dir, "video-png", 
                    "{}-iter{}.png".format(pathn_record_str, ii))
                img = cv2.imread(filename)
                # cv2.putText(
                #     img, "Path:{} \nIteration:{}".format(pathn_record_str, ii), 
                #     (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
                img_array.append(img)

            videoname = os.path.join(
                cfg.experiment_dir, "video-avi", 
                "{}.avi".format(pathn_record_str))
            check_and_create_dir(videoname)
            out = cv2.VideoWriter(
                videoname, 
                # cv2.VideoWriter_fourcc(*'mp4v'),
                cv2.VideoWriter_fourcc(*'FFV1'), 
                20.0, (w, h))
            for iii in range(len(img_array)):
                out.write(img_array[iii])
            out.release()
            # shutil.rmtree(os.path.join(cfg.experiment_dir, "video-png"))

    print("The last loss is: {}".format(loss.item()))