luulinh90s's picture
update
6849f81
raw
history blame
11.7 kB
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, session
import json
import random
import os
import string
import logging
from datetime import datetime
from huggingface_hub import login, HfApi, hf_hub_download
# Set up logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
])
logger = logging.getLogger(__name__)
# Use the Hugging Face token from environment variables
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
else:
logger.error("HF_TOKEN not found in environment variables")
app = Flask(__name__)
app.config['SECRET_KEY'] = 'supersecretkey' # Change this to a random secret key
# Directories for visualizations
VISUALIZATION_DIRS = {
"No-XAI": "htmls_NO_XAI_mod",
"Dater": "htmls_DATER_mod2",
"Chain-of-Table": "htmls_COT_mod",
"Plan-of-SQLs": "htmls_POS_mod2"
}
def get_method_dir(method):
if method == 'No-XAI':
return 'NO_XAI'
elif method == 'Dater':
return 'DATER'
elif method == 'Chain-of-Table':
return 'COT'
elif method == 'Plan-of-SQLs':
return 'POS'
else:
return None
METHODS = ["No-XAI", "Dater", "Chain-of-Table", "Plan-of-SQLs"]
def save_session_data(username, data):
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
file_name = f'{username}_{timestamp}_session.json'
json_data = json.dumps(data, indent=4)
temp_file_path = f"/tmp/{file_name}"
with open(temp_file_path, 'w') as f:
f.write(json_data)
api = HfApi()
api.upload_file(
path_or_fileobj=temp_file_path,
path_in_repo=f"session_data_foward_simulation/{file_name}",
repo_id="luulinh90s/Tabular-LLM-Study-Data",
repo_type="space",
)
os.remove(temp_file_path)
logger.info(f"Session data saved for user {username} in Hugging Face Data Space")
except Exception as e:
logger.exception(f"Error saving session data for user {username}: {e}")
def load_session_data(username):
try:
api = HfApi()
files = api.list_repo_files(repo_id="luulinh90s/Tabular-LLM-Study-Data", repo_type="space")
user_files = [f for f in files if f.startswith(f'session_data_foward_simulation/{username}_') and f.endswith('_session.json')]
if not user_files:
logger.warning(f"No session data found for user {username}")
return None
latest_file = sorted(user_files, reverse=True)[0]
file_path = hf_hub_download(repo_id="luulinh90s/Tabular-LLM-Study-Data", repo_type="space", filename=latest_file)
with open(file_path, 'r') as f:
data = json.load(f)
logger.info(f"Session data loaded for user {username} from Hugging Face Data Space")
return data
except Exception as e:
logger.exception(f"Error loading session data for user {username}: {e}")
return None
def load_samples():
common_samples = []
categories = ["TP", "TN", "FP", "FN"]
for category in categories:
files = set(os.listdir(f'htmls_NO_XAI_mod/{category}'))
for method in ["Dater", "Chain-of-Table", "Plan-of-SQLs"]:
method_dir = VISUALIZATION_DIRS[method]
files &= set(os.listdir(f'{method_dir}/{category}'))
for file in files:
common_samples.append({'category': category, 'file': file})
logger.info(f"Found {len(common_samples)} common samples across all methods")
return common_samples
def select_balanced_samples(samples):
try:
if len(samples) < 10:
logger.warning(f"Not enough common samples. Only {len(samples)} available.")
return samples
selected_samples = random.sample(samples, 10)
logger.info(f"Selected 10 unique samples")
return selected_samples
except Exception as e:
logger.exception("Error selecting balanced samples")
return []
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
username = request.form.get('username')
seed = request.form.get('seed')
method = request.form.get('method')
if not username or not seed or not method:
return "Please fill in all fields and select a method.", 400
try:
seed = int(seed)
random.seed(seed)
all_samples = load_samples()
selected_samples = select_balanced_samples(all_samples)
if len(selected_samples) == 0:
return "No common samples were found", 500
session_data = {
'username': username,
'seed': seed,
'method': method,
'selected_samples': selected_samples,
'current_index': 0,
'responses': [],
'start_time': datetime.now().isoformat()
}
save_session_data(username, session_data)
return redirect(url_for('experiment', username=username))
except Exception as e:
logger.exception(f"Error in index route: {e}")
return "An error occurred", 500
return render_template('index.html')
@app.route('/experiment/<username>', methods=['GET', 'POST'])
def experiment(username):
try:
session_data = load_session_data(username)
if not session_data:
return redirect(url_for('index'))
selected_samples = session_data['selected_samples']
method = session_data['method']
current_index = session_data['current_index']
if current_index >= len(selected_samples):
return redirect(url_for('completed', username=username))
sample = selected_samples[current_index]
visualization_dir = VISUALIZATION_DIRS[method]
visualization_path = f"{visualization_dir}/{sample['category']}/{sample['file']}"
statement = """
Please note that in f_select_row() function, starting index is 0 and Index * represents the selection of the whole Table.
Based on the explanation provided, what do you think the AI model will predict?
Will it predict the statement as TRUE or FALSE?
"""
return render_template('experiment.html',
sample_id=current_index,
statement=statement,
visualization=url_for('send_visualization', filename=visualization_path),
username=username,
method=method)
except Exception as e:
logger.exception(f"An error occurred in the experiment route: {e}")
return "An error occurred", 500
@app.route('/feedback', methods=['POST'])
def feedback():
try:
username = request.form['username']
prediction = request.form['prediction']
session_data = load_session_data(username)
if not session_data:
logger.error(f"No session data found for user: {username}")
return redirect(url_for('index'))
session_data['responses'].append({
'sample_id': session_data['current_index'],
'user_prediction': prediction
})
session_data['current_index'] += 1
save_session_data(username, session_data)
logger.info(f"Prediction saved for user {username}, sample {session_data['current_index'] - 1}")
if session_data['current_index'] >= len(session_data['selected_samples']):
return redirect(url_for('completed', username=username))
return redirect(url_for('experiment', username=username))
except Exception as e:
logger.exception(f"Error in feedback route: {e}")
return "An error occurred", 500
@app.route('/completed/<username>')
def completed(username):
try:
session_data = load_session_data(username)
if not session_data:
logger.error(f"No session data found for user: {username}")
return redirect(url_for('index'))
session_data['end_time'] = datetime.now().isoformat()
responses = session_data['responses']
method = session_data['method']
if method == "Chain-of-Table":
json_file = 'Tabular_LLMs_human_study_vis_6_COT.json'
elif method == "Plan-of-SQLs":
json_file = 'Tabular_LLMs_human_study_vis_6_POS.json'
elif method == "Dater":
json_file = 'Tabular_LLMs_human_study_vis_6_DATER.json'
elif method == "No-XAI":
json_file = 'Tabular_LLMs_human_study_vis_6_NO_XAI.json'
else:
return "Invalid method", 400
with open(json_file, 'r') as f:
ground_truth = json.load(f)
correct_predictions = 0
true_predictions = 0
false_predictions = 0
for response in responses:
sample_id = response['sample_id']
user_prediction = response['user_prediction']
visualization_file = session_data['selected_samples'][sample_id]['file']
index = visualization_file.split('-')[1].split('.')[0]
ground_truth_key = f"{get_method_dir(method)}_test-{index}.html"
logger.info(f"ground_truth_key: {ground_truth_key}")
if ground_truth_key in ground_truth:
model_prediction = ground_truth[ground_truth_key]['answer'].upper()
if user_prediction.upper() == model_prediction:
correct_predictions += 1
if user_prediction.upper() == "TRUE":
true_predictions += 1
elif user_prediction.upper() == "FALSE":
false_predictions += 1
else:
logger.warning(f"Missing key in ground truth: {ground_truth_key}")
accuracy = (correct_predictions / len(responses)) * 100 if responses else 0
accuracy = round(accuracy, 2)
true_percentage = (true_predictions / len(responses)) * 100 if len(responses) else 0
false_percentage = (false_predictions / len(responses)) * 100 if len(responses) else 0
true_percentage = round(true_percentage, 2)
false_percentage = round(false_percentage, 2)
session_data['accuracy'] = accuracy
session_data['true_percentage'] = true_percentage
session_data['false_percentage'] = false_percentage
save_session_data(username, session_data)
return render_template('completed.html',
accuracy=accuracy,
true_percentage=true_percentage,
false_percentage=false_percentage)
except Exception as e:
logger.exception(f"An error occurred in the completed route: {e}")
return "An error occurred", 500
@app.route('/visualizations/<path:filename>')
def send_visualization(filename):
logger.info(f"Attempting to serve file: {filename}")
base_dir = os.getcwd()
file_path = os.path.normpath(os.path.join(base_dir, filename))
if not file_path.startswith(base_dir):
return "Access denied", 403
if not os.path.exists(file_path):
return "File not found", 404
directory = os.path.dirname(file_path)
file_name = os.path.basename(file_path)
logger.info(f"Serving file from directory: {directory}, filename: {file_name}")
return send_from_directory(directory, file_name)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True)