Spaces:
Running
Running
File size: 5,885 Bytes
72d5e51 12af378 72d5e51 12af378 72d5e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import streamlit as st
from interpreter import interpreter
import os
# Page configuration
st.set_page_config(page_title="AutoInterpreter", layout="wide")
# Initialize session state for settings if not exists
if "settings" not in st.session_state:
st.session_state.settings = {
"api_key": os.getenv("HF_API_KEY", ""),
"api_base": "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2FQwen%2FQwen2.5-72B-Instruct%26quot%3B%3C%2Fspan%3E%2C
"model": "huggingface/Qwen/Qwen2.5-72B-Instruct",
"auto_run": True,
"context_window": 8000,
"max_tokens": 4000
}
# Create header with title and settings button
col1, col2 = st.columns([0.9, 0.1])
with col1:
st.markdown("# Autointerpreter")
st.markdown("Run Any Code. The Final AI Coding Experience.")
with col2:
settings_button = st.button("โ๏ธ", help="Settings")
# Settings modal
if settings_button:
settings_modal = st.container()
with settings_modal:
st.markdown("### Settings")
cols = st.columns(2)
with cols[0]:
# API Settings
st.text_input(
"API Key",
value=st.session_state.settings["api_key"],
type="password",
key="api_key",
on_change=lambda: st.session_state.settings.update({"api_key": st.session_state.api_key})
)
st.text_input(
"Model",
value=st.session_state.settings["model"],
key="model",
on_change=lambda: st.session_state.settings.update({"model": st.session_state.model})
)
with cols[1]:
# Model Settings
st.toggle(
"Auto Run",
value=st.session_state.settings["auto_run"],
key="auto_run",
on_change=lambda: st.session_state.settings.update({"auto_run": st.session_state.auto_run})
)
st.number_input(
"Max Tokens",
value=st.session_state.settings["max_tokens"],
min_value=100,
max_value=8000,
key="max_tokens",
on_change=lambda: st.session_state.settings.update({"max_tokens": st.session_state.max_tokens})
)
# Apply settings to interpreter
interpreter.llm.api_key = st.session_state.settings["api_key"]
interpreter.llm.api_base = st.session_state.settings["api_base"]
interpreter.llm.model = st.session_state.settings["model"]
interpreter.auto_run = st.session_state.settings["auto_run"]
interpreter.context_window = st.session_state.settings["context_window"]
interpreter.max_tokens = st.session_state.settings["max_tokens"]
# Initialize messages session state
if "messages" not in st.session_state:
st.session_state.messages = []
# Clear button
if st.button("๐๏ธ Clear", help="Clear chat"):
interpreter.messages = []
st.session_state.messages = []
st.rerun()
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input
user_input = st.chat_input("Enter your message:")
if user_input:
# Display user message
st.chat_message("user").write(user_input)
st.session_state.messages.append({"role": "user", "content": user_input})
try:
# Create a chat message container for the assistant
with st.chat_message("assistant"):
response_placeholder = st.empty()
message_buffer = []
code_buffer = []
# Stream the response
for chunk in interpreter.chat(user_input, stream=True):
if isinstance(chunk, dict):
content = chunk.get('content')
if content is not None and not any(skip in str(content) for skip in ["context window", "max_tokens", "<|im_end|>"]):
if chunk.get('type') == 'console':
# Accumulate code separately
code_buffer.append(str(content))
# Show complete message + current code
full_response = []
if message_buffer:
full_response.extend(message_buffer)
if code_buffer:
full_response.append(f"\n```python\n{''.join(code_buffer)}\n```\n")
response_placeholder.markdown(''.join(full_response))
else:
# Accumulate message until we have a complete thought
current = str(content)
message_buffer.append(current)
if '.' in current or '\n' in current or len(''.join(message_buffer)) > 80:
# Show complete message + current code
full_response = []
if message_buffer:
full_response.extend(message_buffer)
if code_buffer:
full_response.append(f"\n```python\n{''.join(code_buffer)}\n```\n")
response_placeholder.markdown(''.join(full_response))
# Store the complete response
final_response = []
if message_buffer:
final_response.extend(message_buffer)
if code_buffer:
final_response.append(f"\n```python\n{''.join(code_buffer)}\n```\n")
st.session_state.messages.append({
"role": "assistant",
"content": ''.join(final_response)
})
except Exception as e:
st.error(f"Error: {str(e)}") |