Spaces:
Running
on
Zero
Running
on
Zero
import shutil | |
import sys | |
import tempfile | |
from pathlib import Path | |
from typing import Any, Dict, List | |
sys.path.append(str(Path(__file__).parents[1])) | |
from hloc import ( | |
extract_features, | |
logger, | |
match_features, | |
pairs_from_retrieval, | |
reconstruction, | |
visualization, | |
) | |
try: | |
import pycolmap | |
except ImportError: | |
logger.warning("pycolmap not installed, some features may not work") | |
from ui.viz import fig2im | |
class SfmEngine: | |
def __init__(self, cfg: Dict[str, Any] = None): | |
self.cfg = cfg | |
if "outputs" in cfg and Path(cfg["outputs"]): | |
outputs = Path(cfg["outputs"]) | |
outputs.mkdir(parents=True, exist_ok=True) | |
else: | |
outputs = tempfile.mkdtemp() | |
self.outputs = Path(outputs) | |
def call( | |
self, | |
key: str, | |
images: Path, | |
camera_model: str, | |
camera_params: List[float], | |
max_keypoints: int, | |
keypoint_threshold: float, | |
match_threshold: float, | |
ransac_threshold: int, | |
ransac_confidence: float, | |
ransac_max_iter: int, | |
scene_graph: bool, | |
global_feature: str, | |
top_k: int = 10, | |
mapper_refine_focal_length: bool = False, | |
mapper_refine_principle_points: bool = False, | |
mapper_refine_extra_params: bool = False, | |
): | |
""" | |
Call a list of functions to perform feature extraction, matching, and reconstruction. | |
Args: | |
key (str): The key to retrieve the matcher and feature models. | |
images (Path): The directory containing the images. | |
outputs (Path): The directory to store the outputs. | |
camera_model (str): The camera model. | |
camera_params (List[float]): The camera parameters. | |
max_keypoints (int): The maximum number of features. | |
match_threshold (float): The match threshold. | |
ransac_threshold (int): The RANSAC threshold. | |
ransac_confidence (float): The RANSAC confidence. | |
ransac_max_iter (int): The maximum number of RANSAC iterations. | |
scene_graph (bool): Whether to compute the scene graph. | |
global_feature (str): Whether to compute the global feature. | |
top_k (int): The number of image-pair to use. | |
mapper_refine_focal_length (bool): Whether to refine the focal length. | |
mapper_refine_principle_points (bool): Whether to refine the principle points. | |
mapper_refine_extra_params (bool): Whether to refine the extra parameters. | |
Returns: | |
Path: The directory containing the SfM results. | |
""" | |
if len(images) == 0: | |
logger.error(f"{images} does not exist.") | |
temp_images = Path(tempfile.mkdtemp()) | |
# copy images | |
logger.info(f"Copying images to {temp_images}.") | |
for image in images: | |
shutil.copy(image, temp_images) | |
matcher_zoo = self.cfg["matcher_zoo"] | |
model = matcher_zoo[key] | |
match_conf = model["matcher"] | |
match_conf["model"]["max_keypoints"] = max_keypoints | |
match_conf["model"]["match_threshold"] = match_threshold | |
feature_conf = model["feature"] | |
feature_conf["model"]["max_keypoints"] = max_keypoints | |
feature_conf["model"]["keypoint_threshold"] = keypoint_threshold | |
# retrieval | |
retrieval_name = self.cfg.get("retrieval_name", "netvlad") | |
retrieval_conf = extract_features.confs[retrieval_name] | |
mapper_options = { | |
"ba_refine_extra_params": mapper_refine_extra_params, | |
"ba_refine_focal_length": mapper_refine_focal_length, | |
"ba_refine_principal_point": mapper_refine_principle_points, | |
"ba_local_max_num_iterations": 40, | |
"ba_local_max_refinements": 3, | |
"ba_global_max_num_iterations": 100, | |
# below 3 options are for individual/video data, for internet photos, they should be left | |
# default | |
"min_focal_length_ratio": 0.1, | |
"max_focal_length_ratio": 10, | |
"max_extra_param": 1e15, | |
} | |
sfm_dir = self.outputs / "sfm_{}".format(key) | |
sfm_pairs = self.outputs / "pairs-sfm.txt" | |
sfm_dir.mkdir(exist_ok=True, parents=True) | |
# extract features | |
retrieval_path = extract_features.main( | |
retrieval_conf, temp_images, self.outputs | |
) | |
pairs_from_retrieval.main(retrieval_path, sfm_pairs, num_matched=top_k) | |
feature_path = extract_features.main( | |
feature_conf, temp_images, self.outputs | |
) | |
# match features | |
match_path = match_features.main( | |
match_conf, sfm_pairs, feature_conf["output"], self.outputs | |
) | |
# reconstruction | |
already_sfm = False | |
if sfm_dir.exists(): | |
try: | |
model = pycolmap.Reconstruction(str(sfm_dir)) | |
already_sfm = True | |
except ValueError: | |
logger.info(f"sfm_dir not exists model: {sfm_dir}") | |
if not already_sfm: | |
model = reconstruction.main( | |
sfm_dir, | |
temp_images, | |
sfm_pairs, | |
feature_path, | |
match_path, | |
mapper_options=mapper_options, | |
) | |
vertices = [] | |
for point3D_id, point3D in model.points3D.items(): | |
vertices.append([point3D.xyz, point3D.color]) | |
model_3d = sfm_dir / "points3D.obj" | |
with open(model_3d, "w") as f: | |
for p, c in vertices: | |
# Write vertex position | |
f.write("v {} {} {}\n".format(p[0], p[1], p[2])) | |
# Write vertex normal (color) | |
f.write( | |
"vn {} {} {}\n".format( | |
c[0] / 255.0, c[1] / 255.0, c[2] / 255.0 | |
) | |
) | |
viz_2d = visualization.visualize_sfm_2d( | |
model, temp_images, color_by="visibility", n=2, dpi=300 | |
) | |
return model_3d, fig2im(viz_2d) / 255.0 | |