MINIMA / ui /app_class.py
lsxi77777's picture
fix bug and add stop button
589716d
import sys
from pathlib import Path
from typing import Any, Dict, Optional, Tuple
import gradio as gr
import numpy as np
from easydict import EasyDict as edict
from omegaconf import OmegaConf
import spaces
sys.path.append(str(Path(__file__).parents[1]))
from ui.sfm import SfmEngine
from ui.utils import (
GRADIO_VERSION,
gen_examples,
generate_warp_images,
get_matcher_zoo,
load_config,
ransac_zoo,
run_matching,
run_ransac,
send_to_match,
)
DESCRIPTION = """
<div style="display: flex; justify-content: center; align-items: center; margin-bottom: 20px;">
<h1 style="width: 100%; text-align: center; font-size: 40px; font-weight: bold; color: #333;">
MINIMA: Modality Invariant Image Matching
</h1>
</div>
<div style="display: flex; justify-content: center; align-items: flex-start; flex-wrap: wrap; margin-bottom: 20px;">
<div>
<a href="https://github.com/LSXI7/MINIMA"><img src="https://img.shields.io/badge/Source_Code-black?logo=Github" alt="Github Source Code"></a>
</div>&nbsp;
<div>
<a href="https://arxiv.org/abs/2412.19412"><img src="https://img.shields.io/badge/arXiv-2412.19412-b31b1b" alt="arXiv"></a>
</div>
</div>
<p style="text-align: center; font-size: 14px; color: #666;">
This Space is derived from <a href="https://github.com/Vincentqyw/image-matching-webui" style="color: #007BFF;">Image Matching WebUI</a>.
We are grateful to the authors for their contribution of the source code.
</p>
<p style="text-align: center; font-size: 14px; color: #666;">
Here we provide our MINIMA-model in our paper for test and comparison, and this project is undergoing continuous enhancement.
</p>
<p style="text-align: center; font-size: 16px; color: #666;">
Special thanks to Hugging Face for providing the ZeroGPU for this Space!
</p>
"""
CSS = """
body {
font-family: Arial, sans-serif;
background-color: #f9f9f9;
margin: 0;
padding: 0;
}
#logo-img {
width: 100px;
height: auto;
margin: 20px auto;
display: block;
}
h1 {
font-size: 40px;
color: #333;
}
a {
text-decoration: none;
color: #007BFF;
}
a:hover {
text-decoration: underline;
}
.logs_class textarea {
font-size: 12px !important;
border: 1px solid #ddd;
border-radius: 4px;
}
"""
class ImageMatchingApp:
def __init__(self, server_name="0.0.0.0", server_port=7860, **kwargs):
self.server_name = server_name
self.server_port = server_port
self.config_path = kwargs.get(
"config", Path(__file__).parent / "config.yaml"
)
self.cfg = load_config(self.config_path)
self.matcher_zoo = get_matcher_zoo(self.cfg["matcher_zoo"])
self.app = None
self.init_interface()
# print all the keys
def init_matcher_dropdown(self):
algos = []
for k, v in self.cfg["matcher_zoo"].items():
if v.get("enable", True):
algos.append(k)
return algos
def init_interface(self):
with gr.Blocks(css=CSS) as self.app:
with gr.Tab("Image Matching"):
with gr.Row():
with gr.Column(scale=1):
gr.Image(
str(
Path(__file__).parent.parent
/ "assets/logo.png"
),
elem_id="logo-img",
show_label=False,
show_share_button=False,
show_download_button=False,
)
with gr.Column(scale=3):
gr.HTML(DESCRIPTION)
with gr.Row(equal_height=False):
with gr.Column():
with gr.Row():
matcher_list = gr.Dropdown(
choices=self.init_matcher_dropdown(),
value="superpoint+minima(lightglue)",
label="Matching Model",
interactive=True,
)
match_image_src = gr.Radio(
(
["upload", "webcam", "clipboard"]
if GRADIO_VERSION > "3"
else ["upload", "webcam", "canvas"]
),
label="Image Source",
value="upload",
)
with gr.Row():
input_image0 = gr.Image(
label="Image 0",
type="numpy",
image_mode="RGB",
height=300 if GRADIO_VERSION > "3" else None,
interactive=True,
)
input_image1 = gr.Image(
label="Image 1",
type="numpy",
image_mode="RGB",
height=300 if GRADIO_VERSION > "3" else None,
interactive=True,
)
with gr.Row():
button_reset = gr.Button(value="Reset")
button_run = gr.Button(
value="Run Match", variant="primary"
)
with gr.Row():
button_stop = gr.Button(value="Force Stop", variant="stop")
with gr.Accordion("Advanced Setting", open=False):
with gr.Accordion("Image Setting", open=True):
with gr.Row():
image_force_resize_cb = gr.Checkbox(
label="Force Resize",
value=False,
interactive=True,
)
image_setting_height = gr.Slider(
minimum=48,
maximum=2048,
step=16,
label="Image Height",
value=480,
visible=False,
)
image_setting_width = gr.Slider(
minimum=64,
maximum=2048,
step=16,
label="Image Width",
value=640,
visible=False,
)
with gr.Accordion("Matching Setting", open=True):
with gr.Row():
match_setting_threshold = gr.Slider(
minimum=0.0,
maximum=1,
step=0.001,
label="Match threshold",
value=0.,
)
match_setting_max_keypoints = gr.Slider(
minimum=10,
maximum=10000,
step=10,
label="Max features",
value=2048,
)
# TODO: add line settings
with gr.Row():
detect_keypoints_threshold = gr.Slider(
minimum=0,
maximum=1,
step=0.0001,
label="Keypoint threshold",
value=0.0005,
)
detect_line_threshold = ( # noqa: F841
gr.Slider(
minimum=0.1,
maximum=1,
step=0.01,
label="Line threshold",
value=0.2,
)
)
# matcher_lists = gr.Radio(
# ["NN-mutual", "Dual-Softmax"],
# label="Matcher mode",
# value="NN-mutual",
# )
with gr.Accordion("RANSAC Setting", open=True):
with gr.Row(equal_height=False):
ransac_method = gr.Dropdown(
choices=ransac_zoo.keys(),
value=self.cfg["defaults"][
"ransac_method"
],
label="RANSAC Method",
interactive=True,
)
ransac_reproj_threshold = gr.Slider(
minimum=0.0,
maximum=20,
step=0.01,
label="Ransac Reproj threshold",
value=8.0,
)
ransac_confidence = gr.Slider(
minimum=0.0,
maximum=1,
step=0.00001,
label="Ransac Confidence",
value=self.cfg["defaults"][
"ransac_confidence"
],
)
ransac_max_iter = gr.Slider(
minimum=0.0,
maximum=100000,
step=100,
label="Ransac Iterations",
value=self.cfg["defaults"][
"ransac_max_iter"
],
)
button_ransac = gr.Button(
value="Rerun RANSAC", variant="primary"
)
with gr.Accordion("Geometry Setting", open=False):
with gr.Row(equal_height=False):
choice_geometry_type = gr.Radio(
["Fundamental", "Homography"],
label="Reconstruct Geometry",
value=self.cfg["defaults"][
"setting_geometry"
],
)
# image resize
image_force_resize_cb.select(
fn=self._on_select_force_resize,
inputs=image_force_resize_cb,
outputs=[image_setting_width, image_setting_height],
)
# collect inputs
state_cache = gr.State({})
inputs = [
input_image0,
input_image1,
match_setting_threshold,
match_setting_max_keypoints,
detect_keypoints_threshold,
matcher_list,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
choice_geometry_type,
gr.State(self.matcher_zoo),
image_force_resize_cb,
image_setting_width,
image_setting_height,
]
# Add some examples
with gr.Row():
# Example inputs
with gr.Accordion(
"Open for More: Examples", open=True
):
gr.Examples(
examples=gen_examples(),
inputs=inputs,
outputs=[],
fn=run_matching,
cache_examples=False,
label=(
"Examples (click one of the images below to Run"
" Match)."
),
)
with gr.Accordion("Supported Algorithms", open=False):
# add a table of supported algorithms
self.display_supported_algorithms()
with gr.Column():
with gr.Accordion(
"Open for More: Keypoints", open=True
):
output_keypoints = gr.Image(
label="Keypoints", type="numpy"
)
with gr.Accordion(
(
"Open for More: Raw Matches"
" (High confidence is represented by green)"
),
open=False,
):
output_matches_raw = gr.Image(
label="Raw Matches",
type="numpy",
)
with gr.Accordion(
(
"Open for More: Ransac Matches"
" (High confidence is represented by green)"
),
open=True,
):
output_matches_ransac = gr.Image(
label="Ransac Matches", type="numpy"
)
with gr.Accordion(
"Open for More: Matches Statistics", open=False
):
output_pred = gr.File(
label="Outputs", elem_id="download"
)
matches_result_info = gr.JSON(
label="Matches Statistics"
)
matcher_info = gr.JSON(label="Match info")
with gr.Accordion(
"Open for More: Warped Image", open=True
):
output_wrapped = gr.Image(
label="Wrapped Pair", type="numpy"
)
# send to input
button_rerun = gr.Button(
value="Send to Input Match Pair",
variant="primary",
)
with gr.Accordion(
"Open for More: Geometry info", open=False
):
geometry_result = gr.JSON(
label="Reconstructed Geometry"
)
# callbacks
match_image_src.change(
fn=self.ui_change_imagebox,
inputs=match_image_src,
outputs=input_image0,
)
match_image_src.change(
fn=self.ui_change_imagebox,
inputs=match_image_src,
outputs=input_image1,
)
# collect outputs
outputs = [
output_keypoints,
output_matches_raw,
output_matches_ransac,
matches_result_info,
matcher_info,
geometry_result,
output_wrapped,
state_cache,
output_pred,
]
# button callbacks
click_event=button_run.click(
fn=run_matching, inputs=inputs, outputs=outputs
)
# stop button
button_stop.click(
fn=None, inputs=None, outputs=None, cancels=[click_event]
)
# Reset images
reset_outputs = [
input_image0,
input_image1,
match_setting_threshold,
match_setting_max_keypoints,
detect_keypoints_threshold,
matcher_list,
input_image0,
input_image1,
match_image_src,
output_keypoints,
output_matches_raw,
output_matches_ransac,
matches_result_info,
matcher_info,
output_wrapped,
geometry_result,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
choice_geometry_type,
output_pred,
image_force_resize_cb,
]
button_reset.click(
fn=self.ui_reset_state,
inputs=None,
outputs=reset_outputs,
)
# run ransac button action
button_ransac.click(
fn=run_ransac,
inputs=[
state_cache,
choice_geometry_type,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
],
outputs=[
output_matches_ransac,
matches_result_info,
output_wrapped,
output_pred,
],
)
# send warped image to match
button_rerun.click(
fn=send_to_match,
inputs=[state_cache],
outputs=[input_image0, input_image1],
)
# estimate geo
choice_geometry_type.change(
fn=generate_warp_images,
inputs=[
input_image0,
input_image1,
geometry_result,
choice_geometry_type,
],
outputs=[output_wrapped, geometry_result],
)
with gr.Tab("Structure from Motion(under-dev)"):
sfm_ui = AppSfmUI( # noqa: F841
{
**self.cfg,
"matcher_zoo": self.matcher_zoo,
"outputs": "experiments/sfm",
}
)
sfm_ui.call_empty()
def run(self):
self.app.queue().launch(
server_name=self.server_name,
server_port=self.server_port,
share=False,
)
def ui_change_imagebox(self, choice):
"""
Updates the image box with the given choice.
Args:
choice (list): The list of image sources to be displayed in the image box.
Returns:
dict: A dictionary containing the updated value, sources, and type for the image box.
"""
ret_dict = {
"value": None, # The updated value of the image box
"__type__": "update", # The type of update for the image box
}
if GRADIO_VERSION > "3":
return {
**ret_dict,
"sources": choice, # The list of image sources to be displayed
}
else:
return {
**ret_dict,
"source": choice, # The list of image sources to be displayed
}
def _on_select_force_resize(self, visible: bool = False):
return gr.update(visible=visible), gr.update(visible=visible)
def ui_reset_state(
self,
*args: Any,
) -> Tuple[
Optional[np.ndarray],
Optional[np.ndarray],
float,
int,
float,
str,
Dict[str, Any],
Dict[str, Any],
str,
Optional[np.ndarray],
Optional[np.ndarray],
Optional[np.ndarray],
Dict[str, Any],
Dict[str, Any],
Optional[np.ndarray],
Dict[str, Any],
str,
int,
float,
int,
bool,
]:
"""
Reset the state of the UI.
Returns:
tuple: A tuple containing the initial values for the UI state.
"""
key: str = list(self.matcher_zoo.keys())[
0
] # Get the first key from matcher_zoo
# flush_logs()
return (
None, # image0: Optional[np.ndarray]
None, # image1: Optional[np.ndarray]
self.cfg["defaults"][
"match_threshold"
], # matching_threshold: float
self.cfg["defaults"]["max_keypoints"], # max_keypoints: int
self.cfg["defaults"][
"keypoint_threshold"
], # keypoint_threshold: float
key, # matcher: str
self.ui_change_imagebox("upload"), # input image0: Dict[str, Any]
self.ui_change_imagebox("upload"), # input image1: Dict[str, Any]
"upload", # match_image_src: str
None, # keypoints: Optional[np.ndarray]
None, # raw matches: Optional[np.ndarray]
None, # ransac matches: Optional[np.ndarray]
{}, # matches result info: Dict[str, Any]
{}, # matcher config: Dict[str, Any]
None, # warped image: Optional[np.ndarray]
{}, # geometry result: Dict[str, Any]
self.cfg["defaults"]["ransac_method"], # ransac_method: str
self.cfg["defaults"][
"ransac_reproj_threshold"
], # ransac_reproj_threshold: float
self.cfg["defaults"][
"ransac_confidence"
], # ransac_confidence: float
self.cfg["defaults"]["ransac_max_iter"], # ransac_max_iter: int
self.cfg["defaults"]["setting_geometry"], # geometry: str
None, # predictions
False,
)
def display_supported_algorithms(self, style="tab"):
def get_link(link, tag="Link"):
return "[{}]({})".format(tag, link) if link is not None else "None"
data = []
cfg = self.cfg["matcher_zoo"]
if style == "md":
markdown_table = "| Algo. | Conference | Code | Project | Paper |\n"
markdown_table += (
"| ----- | ---------- | ---- | ------- | ----- |\n"
)
for k, v in cfg.items():
if not v["info"]["display"]:
continue
github_link = get_link(v["info"]["github"])
project_link = get_link(v["info"]["project"])
paper_link = get_link(
v["info"]["paper"],
(
Path(v["info"]["paper"]).name[-10:]
if v["info"]["paper"] is not None
else "Link"
),
)
markdown_table += "{}|{}|{}|{}|{}\n".format(
v["info"]["name"], # display name
v["info"]["source"],
github_link,
project_link,
paper_link,
)
return gr.Markdown(markdown_table)
elif style == "tab":
for k, v in cfg.items():
if not v["info"].get("display", True):
continue
data.append(
[
v["info"]["name"],
v["info"]["source"],
v["info"]["github"],
v["info"]["paper"],
v["info"]["project"],
]
)
tab = gr.Dataframe(
headers=["Algo.", "Conference", "Code", "Paper", "Project"],
datatype=["str", "str", "str", "str", "str"],
col_count=(5, "fixed"),
value=data,
# wrap=True,
# min_width = 1000,
# height=1000,
)
return tab
class AppBaseUI:
def __init__(self, cfg: Dict[str, Any] = {}):
self.cfg = OmegaConf.create(cfg)
self.inputs = edict({})
self.outputs = edict({})
self.ui = edict({})
def _init_ui(self):
NotImplemented
def call(self, **kwargs):
NotImplemented
def info(self):
gr.Info("SFM is under construction.")
class AppSfmUI(AppBaseUI):
def __init__(self, cfg: Dict[str, Any] = None):
super().__init__(cfg)
assert "matcher_zoo" in self.cfg
self.matcher_zoo = self.cfg["matcher_zoo"]
self.sfm_engine = SfmEngine(cfg)
self._init_ui()
def init_retrieval_dropdown(self):
algos = []
for k, v in self.cfg["retrieval_zoo"].items():
if v.get("enable", True):
algos.append(k)
return algos
def _update_options(self, option):
if option == "sparse":
return gr.Textbox("sparse", visible=True)
elif option == "dense":
return gr.Textbox("dense", visible=True)
else:
return gr.Textbox("not set", visible=True)
def _on_select_custom_params(self, value: bool = False):
return gr.update(visible=value)
def _init_ui(self):
with gr.Row():
# data settting and camera settings
with gr.Column():
self.inputs.input_images = gr.File(
label="SfM",
interactive=True,
file_count="multiple",
min_width=300,
)
# camera setting
with gr.Accordion("Camera Settings", open=True):
with gr.Column():
with gr.Row():
with gr.Column():
self.inputs.camera_model = gr.Dropdown(
choices=[
"PINHOLE",
"SIMPLE_RADIAL",
"OPENCV",
],
value="PINHOLE",
label="Camera Model",
interactive=True,
)
with gr.Column():
gr.Checkbox(
label="Shared Params",
value=True,
interactive=True,
)
camera_custom_params_cb = gr.Checkbox(
label="Custom Params",
value=False,
interactive=True,
)
with gr.Row():
self.inputs.camera_params = gr.Textbox(
label="Camera Params",
value="0,0,0,0",
interactive=False,
visible=False,
)
camera_custom_params_cb.select(
fn=self._on_select_custom_params,
inputs=camera_custom_params_cb,
outputs=self.inputs.camera_params,
)
with gr.Accordion("Matching Settings", open=True):
# feature extraction and matching setting
with gr.Row():
# matcher setting
self.inputs.matcher_key = gr.Dropdown(
choices=self.matcher_zoo.keys(),
value="superpoint+minima(lightglue)",
label="Matching Model",
interactive=True,
)
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Column():
with gr.Row():
# matching setting
self.inputs.max_keypoints = gr.Slider(
label="Max Keypoints",
minimum=100,
maximum=10000,
value=2000,
interactive=True,
)
self.inputs.keypoint_threshold = gr.Slider(
label="Keypoint Threshold",
minimum=0,
maximum=1,
value=0.0005,
)
with gr.Row():
self.inputs.match_threshold = gr.Slider(
label="Match Threshold",
minimum=0.01,
maximum=12.0,
value=0.1,
)
self.inputs.ransac_threshold = gr.Slider(
label="Ransac Threshold",
minimum=0.01,
maximum=12.0,
value=4.0,
step=0.01,
interactive=True,
)
with gr.Row():
self.inputs.ransac_confidence = gr.Slider(
label="Ransac Confidence",
minimum=0.01,
maximum=1.0,
value=0.999,
step=0.0001,
interactive=True,
)
self.inputs.ransac_max_iter = gr.Slider(
label="Ransac Max Iter",
minimum=1,
maximum=100,
value=100,
step=1,
interactive=True,
)
with gr.Accordion("Scene Graph Settings", open=True):
# mapping setting
self.inputs.scene_graph = gr.Dropdown(
choices=["all", "swin", "oneref"],
value="all",
label="Scene Graph",
interactive=True,
)
# global feature setting
self.inputs.global_feature = gr.Dropdown(
choices=self.init_retrieval_dropdown(),
value="netvlad",
label="Global features",
interactive=True,
)
self.inputs.top_k = gr.Slider(
label="Number of Images per Image to Match",
minimum=1,
maximum=100,
value=10,
step=1,
)
# button_match = gr.Button("Run Matching", variant="primary")
# mapping setting
with gr.Column():
with gr.Accordion("Mapping Settings", open=True):
with gr.Row():
with gr.Accordion("Buddle Settings", open=True):
with gr.Row():
self.inputs.mapper_refine_focal_length = (
gr.Checkbox(
label="Refine Focal Length",
value=False,
interactive=True,
)
)
self.inputs.mapper_refine_principle_points = (
gr.Checkbox(
label="Refine Principle Points",
value=False,
interactive=True,
)
)
self.inputs.mapper_refine_extra_params = (
gr.Checkbox(
label="Refine Extra Params",
value=False,
interactive=True,
)
)
with gr.Accordion("Retriangluation Settings", open=True):
gr.Textbox(
label="Retriangluation Details",
)
self.ui.button_sfm = gr.Button("Run SFM", variant="primary")
self.outputs.model_3d = gr.Model3D(
interactive=True,
)
self.outputs.output_image = gr.Image(
label="SFM Visualize",
type="numpy",
image_mode="RGB",
interactive=False,
)
def call_empty(self):
self.ui.button_sfm.click(fn=self.info, inputs=[], outputs=[])
def call(self):
self.ui.button_sfm.click(
fn=self.sfm_engine.call,
inputs=[
self.inputs.matcher_key,
self.inputs.input_images, # images
self.inputs.camera_model,
self.inputs.camera_params,
self.inputs.max_keypoints,
self.inputs.keypoint_threshold,
self.inputs.match_threshold,
self.inputs.ransac_threshold,
self.inputs.ransac_confidence,
self.inputs.ransac_max_iter,
self.inputs.scene_graph,
self.inputs.global_feature,
self.inputs.top_k,
self.inputs.mapper_refine_focal_length,
self.inputs.mapper_refine_principle_points,
self.inputs.mapper_refine_extra_params,
],
outputs=[self.outputs.model_3d, self.outputs.output_image],
)