lsxi77777's picture
commit message
a930e1f
raw
history blame
8.46 kB
from yacs.config import CfgNode as CN
INFERENCE = False
_CN = CN()
############## ↓ XoFTR Pipeline ↓ ##############
_CN.XOFTR = CN()
_CN.XOFTR.RESOLUTION = (8, 2) # options: [(8, 2)]
_CN.XOFTR.FINE_WINDOW_SIZE = 5 # window_size in fine_level, must be odd
_CN.XOFTR.MEDIUM_WINDOW_SIZE = 3 # window_size in fine_level, must be odd
# 1. XoFTR-backbone (local feature CNN) config
_CN.XOFTR.RESNET = CN()
_CN.XOFTR.RESNET.INITIAL_DIM = 128
_CN.XOFTR.RESNET.BLOCK_DIMS = [128, 196, 256] # s1, s2, s3
# 2. XoFTR-coarse module config
_CN.XOFTR.COARSE = CN()
_CN.XOFTR.COARSE.INFERENCE = INFERENCE
_CN.XOFTR.COARSE.D_MODEL = 256
_CN.XOFTR.COARSE.D_FFN = 256
_CN.XOFTR.COARSE.NHEAD = 8
_CN.XOFTR.COARSE.LAYER_NAMES = ['self', 'cross'] * 4
_CN.XOFTR.COARSE.ATTENTION = 'linear' # options: ['linear', 'full']
# 3. Coarse-Matching config
_CN.XOFTR.MATCH_COARSE = CN()
_CN.XOFTR.MATCH_COARSE.INFERENCE = INFERENCE
_CN.XOFTR.MATCH_COARSE.D_MODEL = 256
_CN.XOFTR.MATCH_COARSE.THR = 0.3
_CN.XOFTR.MATCH_COARSE.BORDER_RM = 2
_CN.XOFTR.MATCH_COARSE.MATCH_TYPE = 'dual_softmax' # options: ['dual_softmax']
_CN.XOFTR.MATCH_COARSE.DSMAX_TEMPERATURE = 0.1
_CN.XOFTR.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.2 # training tricks: save GPU memory
_CN.XOFTR.MATCH_COARSE.TRAIN_PAD_NUM_GT_MIN = 200 # training tricks: avoid DDP deadlock
# 4. XoFTR-fine module config
_CN.XOFTR.FINE = CN()
_CN.XOFTR.FINE.DENSER = False # if true, match all features in fine-level windows
_CN.XOFTR.FINE.INFERENCE = INFERENCE
_CN.XOFTR.FINE.DSMAX_TEMPERATURE = 0.1
_CN.XOFTR.FINE.THR = 0.1
_CN.XOFTR.FINE.MLP_HIDDEN_DIM_COEF = 2 # coef for mlp hidden dim (hidden_dim = feat_dim * coef)
_CN.XOFTR.FINE.NHEAD_FINE_LEVEL = 8
_CN.XOFTR.FINE.NHEAD_MEDIUM_LEVEL = 7
# 5. XoFTR Losses
_CN.XOFTR.LOSS = CN()
_CN.XOFTR.LOSS.FOCAL_ALPHA = 0.25
_CN.XOFTR.LOSS.FOCAL_GAMMA = 2.0
_CN.XOFTR.LOSS.POS_WEIGHT = 1.0
_CN.XOFTR.LOSS.NEG_WEIGHT = 1.0
# -- # coarse-level
_CN.XOFTR.LOSS.COARSE_WEIGHT = 0.5
# -- # fine-level
_CN.XOFTR.LOSS.FINE_WEIGHT = 0.3
# -- # sub-pixel
_CN.XOFTR.LOSS.SUB_WEIGHT = 1 * 10**4
############## Dataset ##############
_CN.DATASET = CN()
# 1. data config
# training and validating
_CN.DATASET.TRAIN_DATA_SOURCE = None # options: ['ScanNet', 'MegaDepth']
_CN.DATASET.TRAIN_DATA_ROOT = None
_CN.DATASET.TRAIN_POSE_ROOT = None # (optional directory for poses)
_CN.DATASET.TRAIN_NPZ_ROOT = None
_CN.DATASET.TRAIN_LIST_PATH = None
_CN.DATASET.TRAIN_INTRINSIC_PATH = None
_CN.DATASET.VAL_DATA_SOURCE = None
_CN.DATASET.VAL_DATA_ROOT = None
_CN.DATASET.VAL_POSE_ROOT = None # (optional directory for poses)
_CN.DATASET.VAL_NPZ_ROOT = None
_CN.DATASET.VAL_LIST_PATH = None # None if val data from all scenes are bundled into a single npz file
_CN.DATASET.VAL_INTRINSIC_PATH = None
# testing
_CN.DATASET.TEST_DATA_SOURCE = None
_CN.DATASET.TEST_DATA_ROOT = None
_CN.DATASET.TEST_POSE_ROOT = None # (optional directory for poses)
_CN.DATASET.TEST_NPZ_ROOT = None
_CN.DATASET.TEST_LIST_PATH = None # None if test data from all scenes are bundled into a single npz file
_CN.DATASET.TEST_INTRINSIC_PATH = None
# 2. dataset config
# general options
_CN.DATASET.MIN_OVERLAP_SCORE_TRAIN = 0.4 # discard data with overlap_score < min_overlap_score
_CN.DATASET.MIN_OVERLAP_SCORE_TEST = 0.0
_CN.DATASET.AUGMENTATION_TYPE = "rgb_thermal" # options: [None, 'dark', 'mobile']
# MegaDepth options
_CN.DATASET.MGDPT_IMG_RESIZE = 640 # resize the longer side, zero-pad bottom-right to square.
_CN.DATASET.MGDPT_IMG_PAD = True # pad img to square with size = MGDPT_IMG_RESIZE
_CN.DATASET.MGDPT_DEPTH_PAD = True # pad depthmap to square with size = 2000
_CN.DATASET.MGDPT_DF = 8
# VisTir options
_CN.DATASET.VISTIR_IMG_RESIZE = 640 # resize the longer side, zero-pad bottom-right to square.
_CN.DATASET.VISTIR_IMG_PAD = False # pad img to square with size = VISTIR_IMG_RESIZE
_CN.DATASET.VISTIR_DF = 8
# Pretrain dataset options
_CN.DATASET.PRETRAIN_IMG_RESIZE = 640 # resize the longer side, zero-pad bottom-right to square.
_CN.DATASET.PRETRAIN_IMG_PAD = True # pad img to square with size = PRETRAIN_IMG_RESIZE
_CN.DATASET.PRETRAIN_DF = 8
_CN.DATASET.PRETRAIN_FRAME_GAP = 2 # the gap between video frames of Kaist dataset
############## Trainer ##############
_CN.TRAINER = CN()
_CN.TRAINER.WORLD_SIZE = 1
_CN.TRAINER.CANONICAL_BS = 64
_CN.TRAINER.CANONICAL_LR = 6e-3
_CN.TRAINER.SCALING = None # this will be calculated automatically
_CN.TRAINER.FIND_LR = False # use learning rate finder from pytorch-lightning
_CN.TRAINER.USE_WANDB = False # use weight and biases
# optimizer
_CN.TRAINER.OPTIMIZER = "adamw" # [adam, adamw]
_CN.TRAINER.TRUE_LR = None # this will be calculated automatically at runtime
_CN.TRAINER.ADAM_DECAY = 0. # ADAM: for adam
_CN.TRAINER.ADAMW_DECAY = 0.1
# step-based warm-up
_CN.TRAINER.WARMUP_TYPE = 'linear' # [linear, constant]
_CN.TRAINER.WARMUP_RATIO = 0.
_CN.TRAINER.WARMUP_STEP = 4800
# learning rate scheduler
_CN.TRAINER.SCHEDULER = 'MultiStepLR' # [MultiStepLR, CosineAnnealing, ExponentialLR]
_CN.TRAINER.SCHEDULER_INTERVAL = 'epoch' # [epoch, step]
_CN.TRAINER.MSLR_MILESTONES = [3, 6, 9, 12] # MSLR: MultiStepLR
_CN.TRAINER.MSLR_GAMMA = 0.5
_CN.TRAINER.COSA_TMAX = 30 # COSA: CosineAnnealing
_CN.TRAINER.ELR_GAMMA = 0.999992 # ELR: ExponentialLR, this value for 'step' interval
# plotting related
_CN.TRAINER.ENABLE_PLOTTING = True
_CN.TRAINER.N_VAL_PAIRS_TO_PLOT = 128 # number of val/test paris for plotting
_CN.TRAINER.PLOT_MODE = 'evaluation' # ['evaluation', 'confidence']
_CN.TRAINER.PLOT_MATCHES_ALPHA = 'dynamic'
# geometric metrics and pose solver
_CN.TRAINER.EPI_ERR_THR = 5e-4 # recommendation: 5e-4 for ScanNet, 1e-4 for MegaDepth (from SuperGlue)
_CN.TRAINER.POSE_GEO_MODEL = 'E' # ['E', 'F', 'H']
_CN.TRAINER.POSE_ESTIMATION_METHOD = 'RANSAC' # [RANSAC, DEGENSAC, MAGSAC]
_CN.TRAINER.RANSAC_PIXEL_THR = 0.5
_CN.TRAINER.RANSAC_CONF = 0.99999
_CN.TRAINER.RANSAC_MAX_ITERS = 10000
_CN.TRAINER.USE_MAGSACPP = False
# data sampler for train_dataloader
_CN.TRAINER.DATA_SAMPLER = 'scene_balance' # options: ['scene_balance', 'random', 'normal']
# 'scene_balance' config
_CN.TRAINER.N_SAMPLES_PER_SUBSET = 200
_CN.TRAINER.SB_SUBSET_SAMPLE_REPLACEMENT = True # whether sample each scene with replacement or not
_CN.TRAINER.SB_SUBSET_SHUFFLE = True # after sampling from scenes, whether shuffle within the epoch or not
_CN.TRAINER.SB_REPEAT = 1 # repeat N times for training the sampled data
# 'random' config
_CN.TRAINER.RDM_REPLACEMENT = True
_CN.TRAINER.RDM_NUM_SAMPLES = None
# gradient clipping
_CN.TRAINER.GRADIENT_CLIPPING = 0.5
# reproducibility
# This seed affects the data sampling. With the same seed, the data sampling is promised
# to be the same. When resume training from a checkpoint, it's better to use a different
# seed, otherwise the sampled data will be exactly the same as before resuming, which will
# cause less unique data items sampled during the entire training.
# Use of different seed values might affect the final training result, since not all data items
# are used during training on ScanNet. (60M pairs of images sampled during traing from 230M pairs in total.)
_CN.TRAINER.SEED = 66
############## Pretrain ##############
_CN.PRETRAIN = CN()
_CN.PRETRAIN.PATCH_SIZE = 64 # patch sıze for masks
_CN.PRETRAIN.MASK_RATIO = 0.5
_CN.PRETRAIN.MAE_MARGINS = [0, 0.4, 0, 0] # margins not to be masked (up bottom left right)
_CN.PRETRAIN.VAL_SEED = 42 # rng seed to crate the same masks for validation
_CN.XOFTR.PRETRAIN_PATCH_SIZE = _CN.PRETRAIN.PATCH_SIZE
############## Test/Inference ##############
_CN.TEST = CN()
_CN.TEST.IMG0_RESIZE = 640 # resize the longer side
_CN.TEST.IMG1_RESIZE = 640 # resize the longer side
_CN.TEST.DF = 8
_CN.TEST.PADDING = False # pad img to square with size = IMG0_RESIZE, IMG1_RESIZE
_CN.TEST.COARSE_SCALE = 0.125
def get_cfg_defaults(inference=False):
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
if inference:
_CN.XOFTR.COARSE.INFERENCE = True
_CN.XOFTR.MATCH_COARSE.INFERENCE = True
_CN.XOFTR.FINE.INFERENCE = True
return _CN.clone()