File size: 5,060 Bytes
a930e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# XoFTR: Cross-modal Feature Matching Transformer
### [Paper (arXiv)](https://arxiv.org/pdf/2404.09692) | [Paper (CVF)](https://openaccess.thecvf.com/content/CVPR2024W/IMW/papers/Tuzcuoglu_XoFTR_Cross-modal_Feature_Matching_Transformer_CVPRW_2024_paper.pdf)
<br/>

This is Pytorch implementation of XoFTR: Cross-modal Feature Matching Transformer [CVPR 2024 Image Matching Workshop](https://image-matching-workshop.github.io/) paper.

XoFTR is a cross-modal cross-view method for local feature matching between thermal infrared (TIR) and visible images.

<!-- ![teaser](assets/figures/teaser.png) -->
<p align="center">
<img src="assets/figures/teaser.png" alt="teaser" width="500"/>
</p>

## Colab demo
To run XoFTR with custom image pairs without configuring your own GPU environment, you can use the Colab demo:
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1T495vybejujZjJlPY-sHm8YwV5Ss86AM?usp=sharing)

## Installation
```shell

conda env create -f environment.yaml

conda activate xoftr

```
Download links for
  - [Pretrained models weights](https://drive.google.com/drive/folders/1RAI243OHuyZ4Weo1NiTy280bCE_82s4q?usp=drive_link): Two versions available, trained at 640 and 840 resolutions.
  - [METU-VisTIR dataset](https://drive.google.com/file/d/1Sj_vxj-GXvDQIMSg-ZUJR0vHBLIeDrLg/view?usp=sharing)

## METU-VisTIR Dataset
<!-- ![dataset](assets/figures/dataset.png) -->

<p align="center">
<img src="assets/figures/dataset.png" alt="dataset" width="600"/>
</p>

This dataset includes thermal and visible images captured across six diverse scenes with ground-truth camera poses. Four of the scenes encompass images captured under both cloudy and sunny conditions, while the remaining two scenes exclusively feature cloudy conditions. Since the cameras are auto-focus, there may be result in slight imperfections in the ground truth camera parameters. For more information about the dataset, please refer to our [paper](https://arxiv.org/pdf/2404.09692).

**License of the dataset:**

The METU-VisTIR dataset is licensed under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
### Data format
The dataset is organized into folders according to scenarios. The organization format is as follows:
```

METU-VisTIR/

β”œβ”€β”€ index/

β”‚     β”œβ”€β”€ scene_info_test/

β”‚     β”‚     β”œβ”€β”€ cloudy_cloudy_scene_1.npz   # scene info with test pairs

β”‚     β”‚     └── ...

β”‚     β”œβ”€β”€ scene_info_val/

β”‚     β”‚     β”œβ”€β”€ cloudy_cloudy_scene_1.npz   # scene info with val pairs

β”‚     β”‚     └── ...

β”‚     └── val_test_list/

β”‚           β”œβ”€β”€ test_list.txt               # test scenes list

β”‚           └── val_list.txt                # val scenes list

β”œβ”€β”€ cloudy/                                 # cloudy scenes

β”‚     β”œβ”€β”€ scene_1/             

β”‚     β”‚     β”œβ”€β”€ thermal/

β”‚     β”‚     β”‚      └── images/              # thermal images

β”‚     β”‚     └── visible/

β”‚     β”‚            └── images/              # visible images 

β”‚     └── ...

└── sunny/                                  # sunny scenes

      └── ...

```

cloudy_cloudy_scene_\*.npz and cloudy_sunny_scene_\*.npz files contain GT camera poses and image pairs



## Runing XoFTR

### Demo to match image pairs with XoFTR



A <span style="color:red">demo notebook</span> for XoFTR on a single pair of images is given in [notebooks/xoftr_demo.ipynb](notebooks/xoftr_demo.ipynb).





### Reproduce the testing results for relative pose estimation

You need to download METU-VisTIR dataset. After downloading, unzip the required files. Then, symlinks need to be created for the `data` folder.

```shell

unzip downloaded-file.zip



# set up symlinks

ln -s /path/to/METU_VisTIR/ /path/to/XoFTR/data/

```



```shell

conda activate xoftr



python test_relative_pose.py xoftr --ckpt weights/weights_xoftr_640.ckpt



# with visualization

python test_relative_pose.py xoftr --ckpt weights/weights_xoftr_640.ckpt --save_figs

```



The results and figures are saved to `results_relative_pose/`.



<br/>



## Training

See [Training XoFTR](./docs/TRAINING.md) for more details.



## Citation



If you find this code useful for your research, please use the following BibTeX entry.



```bibtex

@inproceedings{tuzcuouglu2024xoftr,

  title={XoFTR: Cross-modal Feature Matching Transformer},

  author={Tuzcuo{\u{g}}lu, {\"O}nder and K{\"o}ksal, Aybora and Sofu, Bu{\u{g}}ra and Kalkan, Sinan and Alatan, A Aydin},

  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},

  pages={4275--4286},

  year={2024}

}

```

## Acknowledgement

This code is derived from [LoFTR](https://github.com/zju3dv/LoFTR). We are grateful to the authors for their contribution of the source code.