Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,258 Bytes
a930e1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import shutil
import sys
import tempfile
from pathlib import Path
from typing import Any, Dict, List
sys.path.append(str(Path(__file__).parents[1]))
from hloc import (
extract_features,
logger,
match_features,
pairs_from_retrieval,
reconstruction,
visualization,
)
try:
import pycolmap
except ImportError:
logger.warning("pycolmap not installed, some features may not work")
from ui.viz import fig2im
class SfmEngine:
def __init__(self, cfg: Dict[str, Any] = None):
self.cfg = cfg
if "outputs" in cfg and Path(cfg["outputs"]):
outputs = Path(cfg["outputs"])
outputs.mkdir(parents=True, exist_ok=True)
else:
outputs = tempfile.mkdtemp()
self.outputs = Path(outputs)
def call(
self,
key: str,
images: Path,
camera_model: str,
camera_params: List[float],
max_keypoints: int,
keypoint_threshold: float,
match_threshold: float,
ransac_threshold: int,
ransac_confidence: float,
ransac_max_iter: int,
scene_graph: bool,
global_feature: str,
top_k: int = 10,
mapper_refine_focal_length: bool = False,
mapper_refine_principle_points: bool = False,
mapper_refine_extra_params: bool = False,
):
"""
Call a list of functions to perform feature extraction, matching, and reconstruction.
Args:
key (str): The key to retrieve the matcher and feature models.
images (Path): The directory containing the images.
outputs (Path): The directory to store the outputs.
camera_model (str): The camera model.
camera_params (List[float]): The camera parameters.
max_keypoints (int): The maximum number of features.
match_threshold (float): The match threshold.
ransac_threshold (int): The RANSAC threshold.
ransac_confidence (float): The RANSAC confidence.
ransac_max_iter (int): The maximum number of RANSAC iterations.
scene_graph (bool): Whether to compute the scene graph.
global_feature (str): Whether to compute the global feature.
top_k (int): The number of image-pair to use.
mapper_refine_focal_length (bool): Whether to refine the focal length.
mapper_refine_principle_points (bool): Whether to refine the principle points.
mapper_refine_extra_params (bool): Whether to refine the extra parameters.
Returns:
Path: The directory containing the SfM results.
"""
if len(images) == 0:
logger.error(f"{images} does not exist.")
temp_images = Path(tempfile.mkdtemp())
# copy images
logger.info(f"Copying images to {temp_images}.")
for image in images:
shutil.copy(image, temp_images)
matcher_zoo = self.cfg["matcher_zoo"]
model = matcher_zoo[key]
match_conf = model["matcher"]
match_conf["model"]["max_keypoints"] = max_keypoints
match_conf["model"]["match_threshold"] = match_threshold
feature_conf = model["feature"]
feature_conf["model"]["max_keypoints"] = max_keypoints
feature_conf["model"]["keypoint_threshold"] = keypoint_threshold
# retrieval
retrieval_name = self.cfg.get("retrieval_name", "netvlad")
retrieval_conf = extract_features.confs[retrieval_name]
mapper_options = {
"ba_refine_extra_params": mapper_refine_extra_params,
"ba_refine_focal_length": mapper_refine_focal_length,
"ba_refine_principal_point": mapper_refine_principle_points,
"ba_local_max_num_iterations": 40,
"ba_local_max_refinements": 3,
"ba_global_max_num_iterations": 100,
# below 3 options are for individual/video data, for internet photos, they should be left
# default
"min_focal_length_ratio": 0.1,
"max_focal_length_ratio": 10,
"max_extra_param": 1e15,
}
sfm_dir = self.outputs / "sfm_{}".format(key)
sfm_pairs = self.outputs / "pairs-sfm.txt"
sfm_dir.mkdir(exist_ok=True, parents=True)
# extract features
retrieval_path = extract_features.main(
retrieval_conf, temp_images, self.outputs
)
pairs_from_retrieval.main(retrieval_path, sfm_pairs, num_matched=top_k)
feature_path = extract_features.main(
feature_conf, temp_images, self.outputs
)
# match features
match_path = match_features.main(
match_conf, sfm_pairs, feature_conf["output"], self.outputs
)
# reconstruction
already_sfm = False
if sfm_dir.exists():
try:
model = pycolmap.Reconstruction(str(sfm_dir))
already_sfm = True
except ValueError:
logger.info(f"sfm_dir not exists model: {sfm_dir}")
if not already_sfm:
model = reconstruction.main(
sfm_dir,
temp_images,
sfm_pairs,
feature_path,
match_path,
mapper_options=mapper_options,
)
vertices = []
for point3D_id, point3D in model.points3D.items():
vertices.append([point3D.xyz, point3D.color])
model_3d = sfm_dir / "points3D.obj"
with open(model_3d, "w") as f:
for p, c in vertices:
# Write vertex position
f.write("v {} {} {}\n".format(p[0], p[1], p[2]))
# Write vertex normal (color)
f.write(
"vn {} {} {}\n".format(
c[0] / 255.0, c[1] / 255.0, c[2] / 255.0
)
)
viz_2d = visualization.visualize_sfm_2d(
model, temp_images, color_by="visibility", n=2, dpi=300
)
return model_3d, fig2im(viz_2d) / 255.0
|