File size: 7,258 Bytes
a930e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import base64
import os
import pickle
import time
from typing import Dict, List

import cv2
import numpy as np
import requests

ENDPOINT = "http://127.0.0.1:8000"
if "REMOTE_URL_RAILWAY" in os.environ:
    ENDPOINT = os.environ["REMOTE_URL_RAILWAY"]

print(f"API ENDPOINT: {ENDPOINT}")

API_VERSION = f"{ENDPOINT}/version"
API_URL_MATCH = f"{ENDPOINT}/v1/match"
API_URL_EXTRACT = f"{ENDPOINT}/v1/extract"


def read_image(path: str) -> str:
    """

    Read an image from a file, encode it as a JPEG and then as a base64 string.

    Args:

        path (str): The path to the image to read.

    Returns:

        str: The base64 encoded image.

    """
    # Read the image from the file
    img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)

    # Encode the image as a png, NO COMPRESSION!!!
    retval, buffer = cv2.imencode(".png", img)

    # Encode the JPEG as a base64 string
    b64img = base64.b64encode(buffer).decode("utf-8")

    return b64img


def do_api_requests(url=API_URL_EXTRACT, **kwargs):
    """

    Helper function to send an API request to the image matching service.

    Args:

        url (str): The URL of the API endpoint to use. Defaults to the

            feature extraction endpoint.

        **kwargs: Additional keyword arguments to pass to the API.

    Returns:

        List[Dict[str, np.ndarray]]: A list of dictionaries containing the

            extracted features. The keys are "keypoints", "descriptors", and

            "scores", and the values are ndarrays of shape (N, 2), (N, ?),

            and (N,), respectively.

    """
    # Set up the request body
    reqbody = {
        # List of image data base64 encoded
        "data": [],
        # List of maximum number of keypoints to extract from each image
        "max_keypoints": [100, 100],
        # List of timestamps for each image (not used?)
        "timestamps": ["0", "1"],
        # Whether to convert the images to grayscale
        "grayscale": 0,
        # List of image height and width
        "image_hw": [[640, 480], [320, 240]],
        # Type of feature to extract
        "feature_type": 0,
        # List of rotation angles for each image
        "rotates": [0.0, 0.0],
        # List of scale factors for each image
        "scales": [1.0, 1.0],
        # List of reference points for each image (not used)
        "reference_points": [[640, 480], [320, 240]],
        # Whether to binarize the descriptors
        "binarize": True,
    }
    # Update the request body with the additional keyword arguments
    reqbody.update(kwargs)
    try:
        # Send the request
        r = requests.post(url, json=reqbody)
        if r.status_code == 200:
            # Return the response
            return r.json()
        else:
            # Print an error message if the response code is not 200
            print(f"Error: Response code {r.status_code} - {r.text}")
    except Exception as e:
        # Print an error message if an exception occurs
        print(f"An error occurred: {e}")


def send_request_match(path0: str, path1: str) -> Dict[str, np.ndarray]:
    """

    Send a request to the API to generate a match between two images.

    Args:

        path0 (str): The path to the first image.

        path1 (str): The path to the second image.

    Returns:

        Dict[str, np.ndarray]: A dictionary containing the generated matches.

            The keys are "keypoints0", "keypoints1", "matches0", and "matches1",

            and the values are ndarrays of shape (N, 2), (N, 2), (N, 2), and

            (N, 2), respectively.

    """
    files = {"image0": open(path0, "rb"), "image1": open(path1, "rb")}
    try:
        # TODO: replace files with post json
        response = requests.post(API_URL_MATCH, files=files)
        pred = {}
        if response.status_code == 200:
            pred = response.json()
            for key in list(pred.keys()):
                pred[key] = np.array(pred[key])
        else:
            print(
                f"Error: Response code {response.status_code} - {response.text}"
            )
    finally:
        files["image0"].close()
        files["image1"].close()
    return pred


def send_request_extract(

    input_images: str, viz: bool = False

) -> List[Dict[str, np.ndarray]]:
    """

    Send a request to the API to extract features from an image.

    Args:

        input_images (str): The path to the image.

    Returns:

        List[Dict[str, np.ndarray]]: A list of dictionaries containing the

            extracted features. The keys are "keypoints", "descriptors", and

            "scores", and the values are ndarrays of shape (N, 2), (N, 128),

            and (N,), respectively.

    """
    image_data = read_image(input_images)
    inputs = {
        "data": [image_data],
    }
    response = do_api_requests(
        url=API_URL_EXTRACT,
        **inputs,
    )
    # breakpoint()
    # print("Keypoints detected: {}".format(len(response[0]["keypoints"])))

    # draw matching, debug only
    if viz:
        from hloc.utils.viz import plot_keypoints
        from ui.viz import fig2im, plot_images

        kpts = np.array(response[0]["keypoints_orig"])
        if "image_orig" in response[0].keys():
            img_orig = np.array(["image_orig"])

            output_keypoints = plot_images([img_orig], titles="titles", dpi=300)
            plot_keypoints([kpts])
            output_keypoints = fig2im(output_keypoints)
            cv2.imwrite(
                "demo_match.jpg",
                output_keypoints[:, :, ::-1].copy(),  # RGB -> BGR
            )
    return response


def get_api_version():
    try:
        response = requests.get(API_VERSION).json()
        print("API VERSION: {}".format(response["version"]))
    except Exception as e:
        print(f"An error occurred: {e}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Send text to stable audio server and receive generated audio."
    )
    parser.add_argument(
        "--image0",
        required=False,
        help="Path for the file's melody",
        default="datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot45.jpg",
    )
    parser.add_argument(
        "--image1",
        required=False,
        help="Path for the file's melody",
        default="datasets/sacre_coeur/mapping_rot/02928139_3448003521_rot90.jpg",
    )
    args = parser.parse_args()

    # get api version
    get_api_version()

    # request match
    # for i in range(10):
    #     t1 = time.time()
    #     preds = send_request_match(args.image0, args.image1)
    #     t2 = time.time()
    #     print(
    #         "Time cost1: {} seconds, matched: {}".format(
    #             (t2 - t1), len(preds["mmkeypoints0_orig"])
    #         )
    #     )

    # request extract
    for i in range(1000):
        t1 = time.time()
        preds = send_request_extract(args.image0)
        t2 = time.time()
        print(f"Time cost2: {(t2 - t1)} seconds")

    # dump preds
    with open("preds.pkl", "wb") as f:
        pickle.dump(preds, f)