lsb's picture
v0
4ce523b
raw
history blame contribute delete
435 Bytes
import gradio as gr
import transformers
from transformers import pipeline
model_name = "lsb/wikipedia-protected-classes"
model_name = "lsb/test_trainer" # lol no time to get it right
pipe = pipeline("text-classification", model_name)
def predict(text):
return "πŸ›‘οΈ Protected" if pipe(text)[0]['label'] == "LABEL_1" else "βœ… General Interest"
iface = gr.Interface(fn=predict, inputs="text", outputs="text")
iface.launch()