import streamlit as st from datasets import load_dataset import os HF_TOKEN = os.environ.get("HF_TOKEN", None) st.set_page_config(page_title="SelfCheck", layout="wide") st.title("SelfCheck scores") @st.cache_data def load_data(min_score=0.4, exclude_stories=True): ds = load_dataset("loubnabnl/comsop_450_samples_detailed", split="train", token=HF_TOKEN, num_proc=2) ds = ds.filter(lambda x: x["passage_score"] >= min_score) if exclude_stories: ds = ds.filter(lambda x: "story" not in x["format"]) return ds exclude_stories = st.checkbox("Exclude stories", False) maximum_score = 0.7 if exclude_stories else 1.0 min_value = st.slider('Select minimum selfcheck score', 0.0, maximum_score, 0.1, key='min_score') ds = load_data(min_score=min_value, exclude_stories=exclude_stories) index = st.number_input(f'Found {len(ds)} samples, choose one', min_value=0, max_value=len(ds)-1, value=0, step=1) min_score = st.number_input(f'Choose threshold for diplayed inconsistent sentences', min_value=0.2, max_value=1.0, value=0.4, step=0.1) # Load data based on slider values and checkbox status sample = ds[index] st.markdown(f"**Passage Score:** {sample['passage_score']:.2f}, **seed data**: {sample['seed_data']}, **format**: {sample['format']}.") st.markdown("---") st.subheader("📕 Generated text") st.markdown(sample['original_text']) # get inconsistent sentences st.subheader("🤔 Sentences with a high inconsistency score (> 0.5)") sentences = sample["sentences_and_scores"] sentences = [e for e in sentences if e["score"] > 0.5] sentences = sorted(sentences, key=lambda d: d['score'], reverse=True) for i, s in enumerate(sentences): st.markdown(f"**Sentence {i}** with score {s['score']:.2f}:\n{s['sentence']}") st.markdown("---")