Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -15,20 +15,32 @@ Our approach involved prompting Mixtral to evaluate whether the topics in each c
|
|
15 |
Additionally, the model was tasked with finding the topic of each cluster.
|
16 |
""")
|
17 |
|
|
|
18 |
@st.cache_data
|
19 |
-
def load_data(min_score=1, max_score=10):
|
20 |
ds = load_dataset("HuggingFaceTB/FW_clusters_free_topics", split="train", token=HF_TOKEN, num_proc=2)
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
return ds
|
23 |
|
24 |
st.subheader("Cluster information")
|
25 |
-
col_1, col_2 = st.columns(2)
|
26 |
with col_1:
|
27 |
min_value = st.slider('Select minimum educational score', 1, 10, 1, key='min_score')
|
28 |
with col_2:
|
29 |
max_value = st.slider('Select maximum educational score', 1, 10, 10, key='max_score')
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
32 |
selected_category_type = st.selectbox("Select a topic", categories)
|
33 |
categories = list(set(ds["category"]))
|
34 |
selected_cluster = ds.filter(lambda x: x['category'] == selected_category)
|
|
|
15 |
Additionally, the model was tasked with finding the topic of each cluster.
|
16 |
""")
|
17 |
|
18 |
+
|
19 |
@st.cache_data
|
20 |
+
def load_data(min_score=1, max_score=10, show_special=False):
|
21 |
ds = load_dataset("HuggingFaceTB/FW_clusters_free_topics", split="train", token=HF_TOKEN, num_proc=2)
|
22 |
+
def filter_func(x):
|
23 |
+
try:
|
24 |
+
score = int(x['educational_score'])
|
25 |
+
return max(min_score <= score <= max_score, show_special)
|
26 |
+
except (ValueError, TypeError):
|
27 |
+
# Return True if show_special is checked and educational_score is None or ''
|
28 |
+
return show_special
|
29 |
+
|
30 |
+
ds = ds.filter(filter_func)
|
31 |
return ds
|
32 |
|
33 |
st.subheader("Cluster information")
|
34 |
+
col_1, col_2, col_3 = st.columns(2)
|
35 |
with col_1:
|
36 |
min_value = st.slider('Select minimum educational score', 1, 10, 1, key='min_score')
|
37 |
with col_2:
|
38 |
max_value = st.slider('Select maximum educational score', 1, 10, 10, key='max_score')
|
39 |
+
with col_3:
|
40 |
+
show_special = st.checkbox('Show clusters with undefined educational score', False)
|
41 |
+
|
42 |
+
# Load data based on slider values and checkbox status
|
43 |
+
ds = load_data(min_value, max_value, show_special)
|
44 |
selected_category_type = st.selectbox("Select a topic", categories)
|
45 |
categories = list(set(ds["category"]))
|
46 |
selected_cluster = ds.filter(lambda x: x['category'] == selected_category)
|