File size: 1,233 Bytes
c4cced7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import streamlit as st
from datasets import load_dataset
import os

HF_TOKEN = os.environ.get("HF_TOKEN", None)

st.set_page_config(
    page_title="Logprobs inspection", layout="wide"
)

st.markdown("# Logprobs inspection")

@st.cache_data
def load_data():
    ds = load_dataset(
        "HuggingFaceTB/sample_log_probs",
        split="train",
        token=HF_TOKEN,
    )
    return ds

ds = load_data()

min_log = min(ds["logprobs"])
max_log = max(ds["logprobs"])
col_1, col_2 = st.columns(2)
with col_1:
    min_score = st.slider("Select minimum logprob", min_value=min_log, max_value=max_log, value=min_log, step=0.2, key="min_score")
with col_2:
    max_score = st.slider("Select maximum logprob", min_value=min_log, max_value=max_log, value=max_log, step=0.2, key="max_score")

filtered_ds = ds.filter(lambda x: min_score <= x["logprobs"] <= max_score)
index = st.slider("Select a sample", 0, len(filtered_ds), 0)

with st.expander("The prompt"):
    st.markdown(filtered_ds[index]['prompt'])

st.markdown(f"**Metadata:** log_prob is {filtered_ds[index]['logprobs']:.2f}, seed: {filtered_ds[index]['seed_data']}, {filtered_ds[index]['format']} for {filtered_ds[index]['audience']}.")
st.markdown(filtered_ds[index]["text"])