weichiang's picture
Update app.py
5904924
raw
history blame
11.9 kB
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import gradio as gr
import numpy as np
# notebook_url = "https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR?usp=sharing"
notebook_url = "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH#scrollTo=o_CpbkGEbhrK"
basic_component_values = [None] * 6
leader_component_values = [None] * 5
def make_leaderboard_md(elo_results):
leaderboard_md = f"""
# Leaderboard
| [Vote](https://chat.lmsys.org/?arena) | [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |
πŸ† This leaderboard is based on the following three benchmarks.
- [Chatbot Arena](https://chat.lmsys.org/?arena) - a crowdsourced, randomized battle platform. We use 130K+ user votes to compute Elo ratings.
- [MT-Bench](https://arxiv.org/abs/2306.05685) - a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.
- [MMLU](https://arxiv.org/abs/2009.03300) (5-shot) - a test to measure a model's multitask accuracy on 57 tasks.
πŸ’» Code: The Arena Elo ratings are computed by this [notebook]({notebook_url}). The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge). The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval). Higher values are better for all benchmarks. Empty cells mean not available. Last updated: Dec 15, 2023.
"""
return leaderboard_md
def make_leaderboard_md_live(elo_results):
leaderboard_md = f"""
# Leaderboard
Last updated: {elo_results["last_updated_datetime"]}
{elo_results["leaderboard_table"]}
"""
return leaderboard_md
def update_elo_components(max_num_files, elo_results_file):
log_files = get_log_files(max_num_files)
# Leaderboard
if elo_results_file is None: # Do live update
battles = clean_battle_data(log_files)
elo_results = report_elo_analysis_results(battles)
leader_component_values[0] = make_leaderboard_md_live(elo_results)
leader_component_values[1] = elo_results["win_fraction_heatmap"]
leader_component_values[2] = elo_results["battle_count_heatmap"]
leader_component_values[3] = elo_results["bootstrap_elo_rating"]
leader_component_values[4] = elo_results["average_win_rate_bar"]
# Basic stats
basic_stats = report_basic_stats(log_files)
md0 = f"Last updated: {basic_stats['last_updated_datetime']}"
md1 = "### Action Histogram\n"
md1 += basic_stats["action_hist_md"] + "\n"
md2 = "### Anony. Vote Histogram\n"
md2 += basic_stats["anony_vote_hist_md"] + "\n"
md3 = "### Model Call Histogram\n"
md3 += basic_stats["model_hist_md"] + "\n"
md4 = "### Model Call (Last 24 Hours)\n"
md4 += basic_stats["num_chats_last_24_hours"] + "\n"
basic_component_values[0] = md0
basic_component_values[1] = basic_stats["chat_dates_bar"]
basic_component_values[2] = md1
basic_component_values[3] = md2
basic_component_values[4] = md3
basic_component_values[5] = md4
def update_worker(max_num_files, interval, elo_results_file):
while True:
tic = time.time()
update_elo_components(max_num_files, elo_results_file)
durtaion = time.time() - tic
print(f"update duration: {durtaion:.2f} s")
time.sleep(max(interval - durtaion, 0))
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
return basic_component_values + leader_component_values
def model_hyperlink(model_name, link):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def load_leaderboard_table_csv(filename, add_hyperlink=True):
lines = open(filename).readlines()
heads = [v.strip() for v in lines[0].split(",")]
rows = []
for i in range(1, len(lines)):
row = [v.strip() for v in lines[i].split(",")]
for j in range(len(heads)):
item = {}
for h, v in zip(heads, row):
if h == "Arena Elo rating":
if v != "-":
v = int(ast.literal_eval(v))
else:
v = np.nan
elif h == "MMLU":
if v != "-":
v = round(ast.literal_eval(v) * 100, 1)
else:
v = np.nan
elif h == "MT-bench (win rate %)":
if v != "-":
v = round(ast.literal_eval(v[:-1]), 1)
else:
v = np.nan
elif h == "MT-bench (score)":
if v != "-":
v = round(ast.literal_eval(v), 2)
else:
v = np.nan
item[h] = v
if add_hyperlink:
item["Model"] = model_hyperlink(item["Model"], item["Link"])
rows.append(item)
return rows
def build_basic_stats_tab():
empty = "Loading ..."
basic_component_values[:] = [empty, None, empty, empty, empty, empty]
md0 = gr.Markdown(empty)
gr.Markdown("#### Figure 1: Number of model calls and votes")
plot_1 = gr.Plot(show_label=False)
with gr.Row():
with gr.Column():
md1 = gr.Markdown(empty)
with gr.Column():
md2 = gr.Markdown(empty)
with gr.Row():
with gr.Column():
md3 = gr.Markdown(empty)
with gr.Column():
md4 = gr.Markdown(empty)
return [md0, plot_1, md1, md2, md3, md4]
def build_leaderboard_tab(elo_results_file, leaderboard_table_file):
if elo_results_file is None: # Do live update
md = "Loading ..."
p1 = p2 = p3 = p4 = None
else:
with open(elo_results_file, "rb") as fin:
elo_results = pickle.load(fin)
md = make_leaderboard_md(elo_results)
p1 = elo_results["win_fraction_heatmap"]
p2 = elo_results["battle_count_heatmap"]
p3 = elo_results["bootstrap_elo_rating"]
p4 = elo_results["average_win_rate_bar"]
md_1 = gr.Markdown(md, elem_id="leaderboard_markdown")
if leaderboard_table_file:
data = load_leaderboard_table_csv(leaderboard_table_file)
headers = [
"Model",
"Arena Elo rating",
"MT-bench (score)",
"MMLU",
"License",
]
values = []
for item in data:
row = []
for key in headers:
value = item[key]
row.append(value)
values.append(row)
values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
headers[1] = "⭐ " + headers[1]
headers[2] = "πŸ“ˆ " + headers[2]
gr.Dataframe(
headers=headers,
datatype=["markdown", "number", "number", "number", "str"],
value=values,
elem_id="leaderboard_dataframe",
)
gr.Markdown(
"If you want to see more models, please help us [add them](https://github.com/lm-sys/FastChat/blob/main/docs/arena.md#how-to-add-a-new-model).",
elem_id="leaderboard_markdown"
)
else:
pass
gr.Markdown(
f"""## More Statistics for Chatbot Arena\n
We added some additional figures to show more statistics. The code for generating them is also included in this [notebook]({notebook_url}).
Please note that you may see different orders from different ranking methods. This is expected for models that perform similarly, as demonstrated by the confidence interval in the bootstrap figure. Going forward, we prefer the classical Elo calculation because of its scalability and interpretability. You can find more discussions in this blog [post](https://lmsys.org/blog/2023-05-03-arena/).
""",
elem_id="leaderboard_markdown"
)
leader_component_values[:] = [md, p1, p2, p3, p4]
with gr.Row():
with gr.Column():
gr.Markdown(
"#### Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles"
)
plot_1 = gr.Plot(p1, show_label=False)
with gr.Column():
gr.Markdown(
"#### Figure 2: Battle Count for Each Combination of Models (without Ties)"
)
plot_2 = gr.Plot(p2, show_label=False)
with gr.Row():
with gr.Column():
gr.Markdown(
"#### Figure 3: Bootstrap of MLE Elo Estimates (1000 Rounds of Random Sampling)"
)
plot_3 = gr.Plot(p3, show_label=False)
with gr.Column():
gr.Markdown(
"#### Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)"
)
plot_4 = gr.Plot(p4, show_label=False)
gr.Markdown(acknowledgment_md)
return [md_1, plot_1, plot_2, plot_3, plot_4]
block_css = """
#notice_markdown {
font-size: 104%
}
#notice_markdown th {
display: none;
}
#notice_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_markdown {
font-size: 104%
}
#leaderboard_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_dataframe td {
line-height: 0.1em;
}
footer {
display:none !important
}
.image-container {
display: flex;
align-items: center;
padding: 1px;
}
.image-container img {
margin: 0 30px;
height: 20px;
max-height: 100%;
width: auto;
max-width: 20%;
}
"""
acknowledgment_md = """
### Acknowledgment
<div class="image-container">
<p> We thank <a href="https://www.kaggle.com/" target="_blank">Kaggle</a>, <a href="https://mbzuai.ac.ae/" target="_blank">MBZUAI</a>, <a href="https://www.anyscale.com/" target="_blank">AnyScale</a>, and <a href="https://huggingface.co/" target="_blank">HuggingFace</a> for their <a href="https://lmsys.org/donations/" target="_blank">sponsorship</a>. </p>
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Kaggle_logo.png/400px-Kaggle_logo.png" alt="Image 1">
<img src="https://mma.prnewswire.com/media/1227419/MBZUAI_Logo.jpg?p=facebookg" alt="Image 2">
<img src="https://docs.anyscale.com/site-assets/logo.png" alt="Image 3">
<img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-with-title.png" alt="Image 4">
</div>
"""
def build_demo(elo_results_file, leaderboard_table_file):
text_size = gr.themes.sizes.text_lg
with gr.Blocks(
title="Chatbot Arena Leaderboard",
theme=gr.themes.Base(text_size=text_size),
css=block_css,
) as demo:
leader_components = build_leaderboard_tab(
elo_results_file, leaderboard_table_file
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
args = parser.parse_args()
elo_result_files = glob.glob("elo_results_*.pkl")
elo_result_files.sort(key=lambda x: int(x[12:-4]))
elo_result_file = elo_result_files[-1]
leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
leaderboard_table_file = leaderboard_table_files[-1]
demo = build_demo(elo_result_file, leaderboard_table_file)
demo.launch(share=args.share)