|
import gradio as gr |
|
import os |
|
|
|
demo = gr.Blocks() |
|
|
|
|
|
|
|
|
|
|
|
name_list = [ |
|
'gpt2', |
|
'lm-human-preference-details/train_policy_accelerate_tf_adam_gpt2_xl_grad_accu__sentiment_offline_5k.json__seed2', |
|
'lm-human-preference-details/train_policy_accelerate_tf_adam_gpt2_xl_grad_accu__descriptiveness_offline_5k.json__seed1', |
|
] |
|
|
|
|
|
interfaces = [gr.load(f"models/{name}") for name in name_list] |
|
def generate_code_os(text): |
|
return [interface(text) for interface in interfaces] |
|
|
|
|
|
def set_example(example: list) -> dict: |
|
return gr.Textbox.update(value=example[0]) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("Compare RLHF Stylistic Models") |
|
with gr.Box(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_text = gr.Textbox(label = "Write your prompt here", lines=4) |
|
with gr.Row(): |
|
btn = gr.Button("Generate") |
|
|
|
|
|
|
|
|
|
|
|
gr.Examples( |
|
[["The young maid said"], ["The table has arrived at the house"]], |
|
[input_text], |
|
) |
|
with gr.Column(): |
|
with gr.Column(): |
|
btn.click(generate_code_os, inputs = input_text, outputs = [gr.Textbox(label=name_list[_], lines=4) for _ in range(len(name_list))]) |
|
|
|
|
|
demo.launch(enable_queue=True,debug=True) |