Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import glob | |
import math | |
import os | |
import time | |
from dataclasses import dataclass | |
from pathlib import Path | |
from threading import Thread | |
from urllib.parse import urlparse | |
import cv2 | |
import numpy as np | |
import requests | |
import torch | |
from PIL import Image | |
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS | |
from ultralytics.utils import LOGGER, ROOT, is_colab, is_kaggle, ops | |
from ultralytics.utils.checks import check_requirements | |
class SourceTypes: | |
webcam: bool = False | |
screenshot: bool = False | |
from_img: bool = False | |
tensor: bool = False | |
class LoadStreams: | |
"""YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`.""" | |
def __init__(self, sources='file.streams', imgsz=640, vid_stride=1): | |
"""Initialize instance variables and check for consistent input stream shapes.""" | |
torch.backends.cudnn.benchmark = True # faster for fixed-size inference | |
self.mode = 'stream' | |
self.imgsz = imgsz | |
self.vid_stride = vid_stride # video frame-rate stride | |
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources] | |
n = len(sources) | |
self.sources = [ops.clean_str(x) for x in sources] # clean source names for later | |
self.imgs, self.fps, self.frames, self.threads, self.shape = [[]] * n, [0] * n, [0] * n, [None] * n, [None] * n | |
for i, s in enumerate(sources): # index, source | |
# Start thread to read frames from video stream | |
st = f'{i + 1}/{n}: {s}... ' | |
if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video | |
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc' | |
s = get_best_youtube_url(s) | |
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam | |
if s == 0 and (is_colab() or is_kaggle()): | |
raise NotImplementedError("'source=0' webcam not supported in Colab and Kaggle notebooks. " | |
"Try running 'source=0' in a local environment.") | |
cap = cv2.VideoCapture(s) | |
if not cap.isOpened(): | |
raise ConnectionError(f'{st}Failed to open {s}') | |
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan | |
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback | |
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback | |
success, im = cap.read() # guarantee first frame | |
if not success or im is None: | |
raise ConnectionError(f'{st}Failed to read images from {s}') | |
self.imgs[i].append(im) | |
self.shape[i] = im.shape | |
self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True) | |
LOGGER.info(f'{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)') | |
self.threads[i].start() | |
LOGGER.info('') # newline | |
# Check for common shapes | |
self.bs = self.__len__() | |
def update(self, i, cap, stream): | |
"""Read stream `i` frames in daemon thread.""" | |
n, f = 0, self.frames[i] # frame number, frame array | |
while cap.isOpened() and n < f: | |
# Only read a new frame if the buffer is empty | |
if not self.imgs[i]: | |
n += 1 | |
cap.grab() # .read() = .grab() followed by .retrieve() | |
if n % self.vid_stride == 0: | |
success, im = cap.retrieve() | |
if success: | |
self.imgs[i].append(im) # add image to buffer | |
else: | |
LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.') | |
self.imgs[i].append(np.zeros(self.shape[i])) | |
cap.open(stream) # re-open stream if signal was lost | |
else: | |
time.sleep(0.01) # wait until the buffer is empty | |
def __iter__(self): | |
"""Iterates through YOLO image feed and re-opens unresponsive streams.""" | |
self.count = -1 | |
return self | |
def __next__(self): | |
"""Returns source paths, transformed and original images for processing.""" | |
self.count += 1 | |
# Wait until a frame is available in each buffer | |
while not all(self.imgs): | |
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit | |
cv2.destroyAllWindows() | |
raise StopIteration | |
time.sleep(1 / min(self.fps)) | |
# Get and remove the next frame from imgs buffer | |
return self.sources, [x.pop(0) for x in self.imgs], None, '' | |
def __len__(self): | |
"""Return the length of the sources object.""" | |
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years | |
class LoadScreenshots: | |
"""YOLOv8 screenshot dataloader, i.e. `yolo predict source=screen`.""" | |
def __init__(self, source, imgsz=640): | |
"""source = [screen_number left top width height] (pixels).""" | |
check_requirements('mss') | |
import mss # noqa | |
source, *params = source.split() | |
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0 | |
if len(params) == 1: | |
self.screen = int(params[0]) | |
elif len(params) == 4: | |
left, top, width, height = (int(x) for x in params) | |
elif len(params) == 5: | |
self.screen, left, top, width, height = (int(x) for x in params) | |
self.imgsz = imgsz | |
self.mode = 'stream' | |
self.frame = 0 | |
self.sct = mss.mss() | |
self.bs = 1 | |
# Parse monitor shape | |
monitor = self.sct.monitors[self.screen] | |
self.top = monitor['top'] if top is None else (monitor['top'] + top) | |
self.left = monitor['left'] if left is None else (monitor['left'] + left) | |
self.width = width or monitor['width'] | |
self.height = height or monitor['height'] | |
self.monitor = {'left': self.left, 'top': self.top, 'width': self.width, 'height': self.height} | |
def __iter__(self): | |
"""Returns an iterator of the object.""" | |
return self | |
def __next__(self): | |
"""mss screen capture: get raw pixels from the screen as np array.""" | |
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR | |
s = f'screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: ' | |
self.frame += 1 | |
return [str(self.screen)], [im0], None, s # screen, img, vid_cap, string | |
class LoadImages: | |
"""YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`.""" | |
def __init__(self, path, imgsz=640, vid_stride=1): | |
"""Initialize the Dataloader and raise FileNotFoundError if file not found.""" | |
parent = None | |
if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line | |
parent = Path(path).parent | |
path = Path(path).read_text().rsplit() | |
files = [] | |
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]: | |
a = str(Path(p).absolute()) # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912 | |
if '*' in a: | |
files.extend(sorted(glob.glob(a, recursive=True))) # glob | |
elif os.path.isdir(a): | |
files.extend(sorted(glob.glob(os.path.join(a, '*.*')))) # dir | |
elif os.path.isfile(a): | |
files.append(a) # files (absolute or relative to CWD) | |
elif parent and (parent / p).is_file(): | |
files.append(str((parent / p).absolute())) # files (relative to *.txt file parent) | |
else: | |
raise FileNotFoundError(f'{p} does not exist') | |
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS] | |
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS] | |
ni, nv = len(images), len(videos) | |
self.imgsz = imgsz | |
self.files = images + videos | |
self.nf = ni + nv # number of files | |
self.video_flag = [False] * ni + [True] * nv | |
self.mode = 'image' | |
self.vid_stride = vid_stride # video frame-rate stride | |
self.bs = 1 | |
if any(videos): | |
self.orientation = None # rotation degrees | |
self._new_video(videos[0]) # new video | |
else: | |
self.cap = None | |
if self.nf == 0: | |
raise FileNotFoundError(f'No images or videos found in {p}. ' | |
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}') | |
def __iter__(self): | |
"""Returns an iterator object for VideoStream or ImageFolder.""" | |
self.count = 0 | |
return self | |
def __next__(self): | |
"""Return next image, path and metadata from dataset.""" | |
if self.count == self.nf: | |
raise StopIteration | |
path = self.files[self.count] | |
if self.video_flag[self.count]: | |
# Read video | |
self.mode = 'video' | |
for _ in range(self.vid_stride): | |
self.cap.grab() | |
success, im0 = self.cap.retrieve() | |
while not success: | |
self.count += 1 | |
self.cap.release() | |
if self.count == self.nf: # last video | |
raise StopIteration | |
path = self.files[self.count] | |
self._new_video(path) | |
success, im0 = self.cap.read() | |
self.frame += 1 | |
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False | |
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ' | |
else: | |
# Read image | |
self.count += 1 | |
im0 = cv2.imread(path) # BGR | |
if im0 is None: | |
raise FileNotFoundError(f'Image Not Found {path}') | |
s = f'image {self.count}/{self.nf} {path}: ' | |
return [path], [im0], self.cap, s | |
def _new_video(self, path): | |
"""Create a new video capture object.""" | |
self.frame = 0 | |
self.cap = cv2.VideoCapture(path) | |
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride) | |
if hasattr(cv2, 'CAP_PROP_ORIENTATION_META'): # cv2<4.6.0 compatibility | |
self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees | |
# Disable auto-orientation due to known issues in https://github.com/ultralytics/yolov5/issues/8493 | |
# self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0) | |
def _cv2_rotate(self, im): | |
"""Rotate a cv2 video manually.""" | |
if self.orientation == 0: | |
return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE) | |
elif self.orientation == 180: | |
return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE) | |
elif self.orientation == 90: | |
return cv2.rotate(im, cv2.ROTATE_180) | |
return im | |
def __len__(self): | |
"""Returns the number of files in the object.""" | |
return self.nf # number of files | |
class LoadPilAndNumpy: | |
def __init__(self, im0, imgsz=640): | |
"""Initialize PIL and Numpy Dataloader.""" | |
if not isinstance(im0, list): | |
im0 = [im0] | |
self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)] | |
self.im0 = [self._single_check(im) for im in im0] | |
self.imgsz = imgsz | |
self.mode = 'image' | |
# Generate fake paths | |
self.bs = len(self.im0) | |
def _single_check(im): | |
"""Validate and format an image to numpy array.""" | |
assert isinstance(im, (Image.Image, np.ndarray)), f'Expected PIL/np.ndarray image type, but got {type(im)}' | |
if isinstance(im, Image.Image): | |
if im.mode != 'RGB': | |
im = im.convert('RGB') | |
im = np.asarray(im)[:, :, ::-1] | |
im = np.ascontiguousarray(im) # contiguous | |
return im | |
def __len__(self): | |
"""Returns the length of the 'im0' attribute.""" | |
return len(self.im0) | |
def __next__(self): | |
"""Returns batch paths, images, processed images, None, ''.""" | |
if self.count == 1: # loop only once as it's batch inference | |
raise StopIteration | |
self.count += 1 | |
return self.paths, self.im0, None, '' | |
def __iter__(self): | |
"""Enables iteration for class LoadPilAndNumpy.""" | |
self.count = 0 | |
return self | |
class LoadTensor: | |
def __init__(self, im0) -> None: | |
self.im0 = self._single_check(im0) | |
self.bs = self.im0.shape[0] | |
self.mode = 'image' | |
self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)] | |
def _single_check(im, stride=32): | |
"""Validate and format an image to torch.Tensor.""" | |
s = f'WARNING ⚠️ torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) ' \ | |
f'divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible.' | |
if len(im.shape) != 4: | |
if len(im.shape) != 3: | |
raise ValueError(s) | |
LOGGER.warning(s) | |
im = im.unsqueeze(0) | |
if im.shape[2] % stride or im.shape[3] % stride: | |
raise ValueError(s) | |
if im.max() > 1.0: | |
LOGGER.warning(f'WARNING ⚠️ torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. ' | |
f'Dividing input by 255.') | |
im = im.float() / 255.0 | |
return im | |
def __iter__(self): | |
"""Returns an iterator object.""" | |
self.count = 0 | |
return self | |
def __next__(self): | |
"""Return next item in the iterator.""" | |
if self.count == 1: | |
raise StopIteration | |
self.count += 1 | |
return self.paths, self.im0, None, '' | |
def __len__(self): | |
"""Returns the batch size.""" | |
return self.bs | |
def autocast_list(source): | |
""" | |
Merges a list of source of different types into a list of numpy arrays or PIL images | |
""" | |
files = [] | |
for im in source: | |
if isinstance(im, (str, Path)): # filename or uri | |
files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im)) | |
elif isinstance(im, (Image.Image, np.ndarray)): # PIL or np Image | |
files.append(im) | |
else: | |
raise TypeError(f'type {type(im).__name__} is not a supported Ultralytics prediction source type. \n' | |
f'See https://docs.ultralytics.com/modes/predict for supported source types.') | |
return files | |
LOADERS = [LoadStreams, LoadPilAndNumpy, LoadImages, LoadScreenshots] | |
def get_best_youtube_url(url, use_pafy=True): | |
""" | |
Retrieves the URL of the best quality MP4 video stream from a given YouTube video. | |
This function uses the pafy or yt_dlp library to extract the video info from YouTube. It then finds the highest | |
quality MP4 format that has video codec but no audio codec, and returns the URL of this video stream. | |
Args: | |
url (str): The URL of the YouTube video. | |
use_pafy (bool): Use the pafy package, default=True, otherwise use yt_dlp package. | |
Returns: | |
(str): The URL of the best quality MP4 video stream, or None if no suitable stream is found. | |
""" | |
if use_pafy: | |
check_requirements(('pafy', 'youtube_dl==2020.12.2')) | |
import pafy # noqa | |
return pafy.new(url).getbest(preftype='mp4').url | |
else: | |
check_requirements('yt-dlp') | |
import yt_dlp | |
with yt_dlp.YoutubeDL({'quiet': True}) as ydl: | |
info_dict = ydl.extract_info(url, download=False) # extract info | |
for f in info_dict.get('formats', None): | |
if f['vcodec'] != 'none' and f['acodec'] == 'none' and f['ext'] == 'mp4': | |
return f.get('url', None) | |
if __name__ == '__main__': | |
img = cv2.imread(str(ROOT / 'assets/bus.jpg')) | |
dataset = LoadPilAndNumpy(im0=img) | |
for d in dataset: | |
print(d[0]) | |