Spaces:
Sleeping
Sleeping
justinxzhao
commited on
Commit
·
6fae7e2
1
Parent(s):
16d72cb
Added general rendering of chats so that they don't disappear during app saving.
Browse files- .gitignore +2 -1
- app.py +455 -340
- constants.py +50 -18
- img/qwen.webp +0 -0
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
env/
|
2 |
client_secret.json
|
3 |
-
__pycache__
|
|
|
|
1 |
env/
|
2 |
client_secret.json
|
3 |
+
__pycache__
|
4 |
+
.env
|
app.py
CHANGED
@@ -7,6 +7,7 @@ import anthropic
|
|
7 |
from together import Together
|
8 |
import google.generativeai as genai
|
9 |
import time
|
|
|
10 |
from typing import List, Optional, Literal, Union, Dict
|
11 |
from constants import (
|
12 |
LLM_COUNCIL_MEMBERS,
|
@@ -51,7 +52,7 @@ anthropic_client = anthropic.Anthropic()
|
|
51 |
client = OpenAI()
|
52 |
|
53 |
|
54 |
-
def anthropic_streamlit_streamer(stream):
|
55 |
"""
|
56 |
Process the Anthropic streaming response and yield content from the deltas.
|
57 |
|
@@ -67,6 +68,18 @@ def anthropic_streamlit_streamer(stream):
|
|
67 |
if text_delta:
|
68 |
yield text_delta
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
# Handle message completion events (optional if needed)
|
71 |
elif event.type == "message_stop":
|
72 |
break # End of message, stop streaming
|
@@ -83,22 +96,34 @@ def get_ui_friendly_name(llm):
|
|
83 |
|
84 |
|
85 |
def google_streamlit_streamer(stream):
|
|
|
86 |
for chunk in stream:
|
87 |
yield chunk.text
|
88 |
|
89 |
|
90 |
-
def together_streamlit_streamer(stream):
|
|
|
91 |
for chunk in stream:
|
|
|
|
|
|
|
|
|
92 |
yield chunk.choices[0].delta.content
|
93 |
|
94 |
|
95 |
def llm_streamlit_streamer(stream, llm):
|
96 |
if llm.startswith("anthropic"):
|
97 |
-
|
|
|
98 |
elif llm.startswith("vertex"):
|
|
|
99 |
return google_streamlit_streamer(stream)
|
100 |
elif llm.startswith("together"):
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
|
104 |
# Helper functions for LLM council and aggregator selection
|
@@ -152,9 +177,13 @@ def get_llm_response_stream(model_identifier, prompt):
|
|
152 |
if provider == "openai":
|
153 |
return get_openai_response(model_name, prompt)
|
154 |
elif provider == "anthropic":
|
155 |
-
return anthropic_streamlit_streamer(
|
|
|
|
|
156 |
elif provider == "together":
|
157 |
-
return together_streamlit_streamer(
|
|
|
|
|
158 |
elif provider == "vertex":
|
159 |
return google_streamlit_streamer(get_google_response(model_name, prompt))
|
160 |
else:
|
@@ -174,7 +203,7 @@ def create_dataframe_for_direct_assessment_judging_response(
|
|
174 |
for criteria_score in judging_model.criteria_scores:
|
175 |
data.append(
|
176 |
{
|
177 |
-
"
|
178 |
"criteria": criteria_score.criterion,
|
179 |
"score": criteria_score.score,
|
180 |
"explanation": criteria_score.explanation,
|
@@ -283,58 +312,62 @@ def get_parse_judging_response_for_direct_assessment_prompt(
|
|
283 |
)
|
284 |
|
285 |
|
286 |
-
DEBUG_MODE = True
|
287 |
-
|
288 |
-
|
289 |
def parse_judging_responses(
|
290 |
prompt: str, judging_responses: dict[str, str]
|
291 |
) -> DirectAssessmentJudgingResponse:
|
292 |
-
if DEBUG_MODE:
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
else:
|
326 |
-
|
327 |
-
model="gpt-4o-mini",
|
328 |
-
messages=[
|
329 |
-
{
|
330 |
-
"role": "system",
|
331 |
-
"content": "Parse the judging responses into structured data.",
|
332 |
-
},
|
333 |
-
{"role": "user", "content": prompt},
|
334 |
-
],
|
335 |
-
response_format=DirectAssessmentJudgingResponse,
|
336 |
-
)
|
337 |
-
return completion.choices[0].message.parsed
|
338 |
|
339 |
|
340 |
def plot_criteria_scores(df):
|
@@ -401,11 +434,11 @@ def plot_overall_scores(overall_scores_df):
|
|
401 |
ax = sns.barplot(
|
402 |
x="ui_friendly_name",
|
403 |
y="mean_score",
|
404 |
-
hue="ui_friendly_name",
|
405 |
data=summary,
|
406 |
palette="prism",
|
407 |
capsize=0.1,
|
408 |
-
legend=False,
|
409 |
)
|
410 |
|
411 |
# Add error bars manually
|
@@ -420,15 +453,20 @@ def plot_overall_scores(overall_scores_df):
|
|
420 |
zorder=10, # Ensure error bars are on top
|
421 |
)
|
422 |
|
423 |
-
# Add text annotations
|
424 |
-
for
|
|
|
|
|
|
|
|
|
|
|
425 |
ax.text(
|
426 |
-
|
427 |
-
|
428 |
-
f"{row
|
429 |
ha="center",
|
430 |
va="bottom",
|
431 |
-
fontweight="bold",
|
432 |
color="black",
|
433 |
bbox=dict(facecolor="white", edgecolor="none", alpha=0.7, pad=0.5),
|
434 |
)
|
@@ -446,23 +484,24 @@ def plot_overall_scores(overall_scores_df):
|
|
446 |
def plot_per_judge_overall_scores(df):
|
447 |
# Find the overall score by finding the overall score for each judge, and then averaging
|
448 |
# over all judges.
|
449 |
-
grouped = df.groupby(["
|
450 |
-
grouped.columns = ["
|
451 |
|
452 |
# Create the horizontal bar plot
|
453 |
plt.figure(figsize=(10, 6))
|
454 |
ax = sns.barplot(
|
455 |
data=grouped,
|
456 |
-
|
457 |
-
|
458 |
-
hue="
|
459 |
-
orient="
|
|
|
460 |
)
|
461 |
|
462 |
# Customize the plot
|
463 |
-
plt.title("Overall
|
464 |
plt.xlabel("Overall Score")
|
465 |
-
plt.ylabel("LLM Judge
|
466 |
|
467 |
# Adjust layout and display the plot
|
468 |
plt.tight_layout()
|
@@ -510,41 +549,63 @@ def main():
|
|
510 |
cols = st.columns([2, 1, 2])
|
511 |
if not st.session_state.authenticated:
|
512 |
with cols[1]:
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
|
|
|
|
|
|
|
|
|
|
519 |
|
520 |
if st.session_state.authenticated:
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
# Council and aggregator selection
|
525 |
-
selected_models = llm_council_selector()
|
526 |
-
|
527 |
-
# st.write("Selected Models:", selected_models)
|
528 |
-
|
529 |
-
selected_aggregator = aggregator_selector()
|
530 |
-
|
531 |
# Initialize session state for collecting responses.
|
532 |
if "responses" not in st.session_state:
|
533 |
-
st.session_state.responses =
|
534 |
-
#
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
544 |
|
545 |
-
if
|
546 |
st.markdown("#### Responses")
|
547 |
|
|
|
|
|
|
|
|
|
|
|
548 |
response_columns = st.columns(3)
|
549 |
|
550 |
selected_models_to_streamlit_column_map = {
|
@@ -552,7 +613,7 @@ def main():
|
|
552 |
}
|
553 |
|
554 |
# Fetching and streaming responses from each selected model
|
555 |
-
for selected_model in selected_models:
|
556 |
with selected_models_to_streamlit_column_map[selected_model]:
|
557 |
st.write(get_ui_friendly_name(selected_model))
|
558 |
with st.chat_message(
|
@@ -571,11 +632,8 @@ def main():
|
|
571 |
user_prompt=user_prompt, llms=selected_models
|
572 |
)
|
573 |
|
574 |
-
with st.expander("Aggregator Prompt"):
|
575 |
-
st.code(aggregator_prompt)
|
576 |
-
|
577 |
# Fetching and streaming response from the aggregator
|
578 |
-
st.write(f"
|
579 |
with st.chat_message(
|
580 |
selected_aggregator,
|
581 |
avatar="img/council_icon.png",
|
@@ -589,272 +647,329 @@ def main():
|
|
589 |
message_placeholder.write_stream(aggregator_stream)
|
590 |
)
|
591 |
|
592 |
-
|
593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
|
595 |
# Judging.
|
596 |
-
st.
|
|
|
597 |
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
|
604 |
-
|
605 |
|
606 |
-
|
607 |
-
|
608 |
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
|
|
|
|
|
|
|
|
615 |
st.session_state["direct_assessment_judging_df"][
|
616 |
-
|
617 |
] = {}
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
st.session_state["direct_assessment_judging_responses"][
|
626 |
-
|
627 |
] = {}
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
for response_model in selected_models:
|
635 |
st.session_state["direct_assessment_overall_scores"][
|
636 |
-
|
637 |
] = {}
|
638 |
-
st.session_state
|
639 |
-
"
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
)
|
652 |
-
|
653 |
-
# TODO: Add option to edit criteria list with a basic text field.
|
654 |
-
criteria_list = DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST
|
655 |
-
|
656 |
-
# Create DirectAssessment object when form is submitted
|
657 |
-
if center_column.button(
|
658 |
-
"Submit Direct Assessment", use_container_width=True
|
659 |
-
):
|
660 |
|
661 |
-
#
|
662 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
|
664 |
-
|
665 |
-
|
666 |
|
667 |
-
|
668 |
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
|
674 |
-
|
675 |
-
|
676 |
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
response=response,
|
693 |
-
criteria_list=criteria_list,
|
694 |
-
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
|
695 |
-
)
|
696 |
|
697 |
-
|
698 |
-
|
699 |
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
):
|
704 |
-
with st.chat_message(
|
705 |
-
judging_model,
|
706 |
-
avatar=PROVIDER_TO_AVATAR_MAP[judging_model],
|
707 |
):
|
708 |
-
|
709 |
-
|
710 |
-
judging_model,
|
711 |
-
)
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
|
|
|
|
|
|
|
|
|
|
738 |
)
|
739 |
-
)
|
740 |
-
with st.expander("Parse Judging Response Prompt"):
|
741 |
-
st.code(parse_judging_response_prompt)
|
742 |
-
# Issue the prompt to openai mini with structured outputs
|
743 |
-
parsed_judging_responses = parse_judging_responses(
|
744 |
-
parse_judging_response_prompt, judging_responses
|
745 |
-
)
|
746 |
-
|
747 |
-
st.session_state["direct_assessment_judging_df"][
|
748 |
-
response_model
|
749 |
-
] = create_dataframe_for_direct_assessment_judging_response(
|
750 |
-
parsed_judging_responses
|
751 |
-
)
|
752 |
-
st.write(
|
753 |
-
st.session_state["direct_assessment_judging_df"][
|
754 |
-
response_model
|
755 |
-
]
|
756 |
-
)
|
757 |
|
758 |
-
plot_criteria_scores(
|
759 |
st.session_state["direct_assessment_judging_df"][
|
760 |
response_model
|
761 |
-
]
|
762 |
-
|
|
|
763 |
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
]
|
770 |
-
)
|
771 |
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
)
|
780 |
-
grouped.columns = ["llm_judge_model", "overall_score"]
|
781 |
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
786 |
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
|
|
|
|
|
|
|
|
858 |
|
859 |
else:
|
860 |
with cols[1]:
|
|
|
7 |
from together import Together
|
8 |
import google.generativeai as genai
|
9 |
import time
|
10 |
+
from collections import defaultdict
|
11 |
from typing import List, Optional, Literal, Union, Dict
|
12 |
from constants import (
|
13 |
LLM_COUNCIL_MEMBERS,
|
|
|
52 |
client = OpenAI()
|
53 |
|
54 |
|
55 |
+
def anthropic_streamlit_streamer(stream, llm):
|
56 |
"""
|
57 |
Process the Anthropic streaming response and yield content from the deltas.
|
58 |
|
|
|
68 |
if text_delta:
|
69 |
yield text_delta
|
70 |
|
71 |
+
# Count input token usage.
|
72 |
+
if event.type == "message_start":
|
73 |
+
input_token_usage = event["usage"]["input_tokens"]
|
74 |
+
output_token_usage = event["usage"]["output_tokens"]
|
75 |
+
st.session_state["input_token_usage"][llm] += input_token_usage
|
76 |
+
st.session_state["output_token_usage"][llm] += output_token_usage
|
77 |
+
|
78 |
+
# Count output token usage.
|
79 |
+
if event.type == "message_delta":
|
80 |
+
output_token_usage = event["usage"]["output_tokens"]
|
81 |
+
st.session_state["output_token_usage"][llm] += output_token_usage
|
82 |
+
|
83 |
# Handle message completion events (optional if needed)
|
84 |
elif event.type == "message_stop":
|
85 |
break # End of message, stop streaming
|
|
|
96 |
|
97 |
|
98 |
def google_streamlit_streamer(stream):
|
99 |
+
# TODO: Count token usage.
|
100 |
for chunk in stream:
|
101 |
yield chunk.text
|
102 |
|
103 |
|
104 |
+
def together_streamlit_streamer(stream, llm):
|
105 |
+
# https://docs.together.ai/docs/chat-overview#streaming-responses
|
106 |
for chunk in stream:
|
107 |
+
if chunk.usage:
|
108 |
+
st.session_state["input_token_usage"][llm] += chunk.usage.prompt_tokens
|
109 |
+
if chunk.usage:
|
110 |
+
st.session_state["output_token_usage"][llm] += chunk.usage.completion_tokens
|
111 |
yield chunk.choices[0].delta.content
|
112 |
|
113 |
|
114 |
def llm_streamlit_streamer(stream, llm):
|
115 |
if llm.startswith("anthropic"):
|
116 |
+
print(f"Using Anthropic streamer for llm: {llm}")
|
117 |
+
return anthropic_streamlit_streamer(stream, llm)
|
118 |
elif llm.startswith("vertex"):
|
119 |
+
print(f"Using Vertex streamer for llm: {llm}")
|
120 |
return google_streamlit_streamer(stream)
|
121 |
elif llm.startswith("together"):
|
122 |
+
print(f"Using Together streamer for llm: {llm}")
|
123 |
+
return together_streamlit_streamer(stream, llm)
|
124 |
+
else:
|
125 |
+
print(f"Using OpenAI streamer for llm: {llm}")
|
126 |
+
return openai_streamlit_streamer(stream, llm)
|
127 |
|
128 |
|
129 |
# Helper functions for LLM council and aggregator selection
|
|
|
177 |
if provider == "openai":
|
178 |
return get_openai_response(model_name, prompt)
|
179 |
elif provider == "anthropic":
|
180 |
+
return anthropic_streamlit_streamer(
|
181 |
+
get_anthropic_response(model_name, prompt), model_identifier
|
182 |
+
)
|
183 |
elif provider == "together":
|
184 |
+
return together_streamlit_streamer(
|
185 |
+
get_together_response(model_name, prompt), model_identifier
|
186 |
+
)
|
187 |
elif provider == "vertex":
|
188 |
return google_streamlit_streamer(get_google_response(model_name, prompt))
|
189 |
else:
|
|
|
203 |
for criteria_score in judging_model.criteria_scores:
|
204 |
data.append(
|
205 |
{
|
206 |
+
"judging_model": model_name,
|
207 |
"criteria": criteria_score.criterion,
|
208 |
"score": criteria_score.score,
|
209 |
"explanation": criteria_score.explanation,
|
|
|
312 |
)
|
313 |
|
314 |
|
|
|
|
|
|
|
315 |
def parse_judging_responses(
|
316 |
prompt: str, judging_responses: dict[str, str]
|
317 |
) -> DirectAssessmentJudgingResponse:
|
318 |
+
# if os.getenv("DEBUG_MODE") == "True":
|
319 |
+
# return DirectAssessmentJudgingResponse(
|
320 |
+
# judging_models=[
|
321 |
+
# DirectAssessmentCriteriaScores(
|
322 |
+
# model="together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
323 |
+
# criteria_scores=[
|
324 |
+
# DirectAssessmentCriterionScore(
|
325 |
+
# criterion="helpfulness", score=3, explanation="explanation1"
|
326 |
+
# ),
|
327 |
+
# DirectAssessmentCriterionScore(
|
328 |
+
# criterion="conciseness", score=4, explanation="explanation2"
|
329 |
+
# ),
|
330 |
+
# DirectAssessmentCriterionScore(
|
331 |
+
# criterion="relevance", score=5, explanation="explanation3"
|
332 |
+
# ),
|
333 |
+
# ],
|
334 |
+
# ),
|
335 |
+
# DirectAssessmentCriteriaScores(
|
336 |
+
# model="together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
337 |
+
# criteria_scores=[
|
338 |
+
# DirectAssessmentCriterionScore(
|
339 |
+
# criterion="helpfulness", score=1, explanation="explanation1"
|
340 |
+
# ),
|
341 |
+
# DirectAssessmentCriterionScore(
|
342 |
+
# criterion="conciseness", score=2, explanation="explanation2"
|
343 |
+
# ),
|
344 |
+
# DirectAssessmentCriterionScore(
|
345 |
+
# criterion="relevance", score=3, explanation="explanation3"
|
346 |
+
# ),
|
347 |
+
# ],
|
348 |
+
# ),
|
349 |
+
# ]
|
350 |
+
# )
|
351 |
+
# else:
|
352 |
+
completion = client.beta.chat.completions.parse(
|
353 |
+
model="gpt-4o-mini",
|
354 |
+
messages=[
|
355 |
+
{
|
356 |
+
"role": "system",
|
357 |
+
"content": "Parse the judging responses into structured data.",
|
358 |
+
},
|
359 |
+
{"role": "user", "content": prompt},
|
360 |
+
],
|
361 |
+
response_format=DirectAssessmentJudgingResponse,
|
362 |
+
)
|
363 |
+
return completion.choices[0].message.parsed
|
364 |
+
|
365 |
+
|
366 |
+
def get_llm_avatar(model_identifier):
|
367 |
+
if "agg__" in model_identifier:
|
368 |
+
return "img/council_icon.png"
|
369 |
else:
|
370 |
+
return PROVIDER_TO_AVATAR_MAP[model_identifier]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
|
373 |
def plot_criteria_scores(df):
|
|
|
434 |
ax = sns.barplot(
|
435 |
x="ui_friendly_name",
|
436 |
y="mean_score",
|
437 |
+
hue="ui_friendly_name",
|
438 |
data=summary,
|
439 |
palette="prism",
|
440 |
capsize=0.1,
|
441 |
+
legend=False,
|
442 |
)
|
443 |
|
444 |
# Add error bars manually
|
|
|
453 |
zorder=10, # Ensure error bars are on top
|
454 |
)
|
455 |
|
456 |
+
# Add text annotations using the actual positions of the bars
|
457 |
+
for patch, row in zip(ax.patches, summary.itertuples()):
|
458 |
+
# Get the center of each bar (x position)
|
459 |
+
x = patch.get_x() + patch.get_width() / 2
|
460 |
+
y = patch.get_height()
|
461 |
+
|
462 |
+
# Add the text annotation
|
463 |
ax.text(
|
464 |
+
x,
|
465 |
+
y,
|
466 |
+
f"{row.mean_score:.2f}",
|
467 |
ha="center",
|
468 |
va="bottom",
|
469 |
+
# fontweight="bold",
|
470 |
color="black",
|
471 |
bbox=dict(facecolor="white", edgecolor="none", alpha=0.7, pad=0.5),
|
472 |
)
|
|
|
484 |
def plot_per_judge_overall_scores(df):
|
485 |
# Find the overall score by finding the overall score for each judge, and then averaging
|
486 |
# over all judges.
|
487 |
+
grouped = df.groupby(["judging_model"]).agg({"score": ["mean"]}).reset_index()
|
488 |
+
grouped.columns = ["judging_model", "overall_score"]
|
489 |
|
490 |
# Create the horizontal bar plot
|
491 |
plt.figure(figsize=(10, 6))
|
492 |
ax = sns.barplot(
|
493 |
data=grouped,
|
494 |
+
x="judging_model",
|
495 |
+
y="overall_score",
|
496 |
+
hue="judging_model",
|
497 |
+
orient="v",
|
498 |
+
palette="rainbow",
|
499 |
)
|
500 |
|
501 |
# Customize the plot
|
502 |
+
plt.title("Overall Score from each LLM Judge")
|
503 |
plt.xlabel("Overall Score")
|
504 |
+
plt.ylabel("LLM Judge")
|
505 |
|
506 |
# Adjust layout and display the plot
|
507 |
plt.tight_layout()
|
|
|
549 |
cols = st.columns([2, 1, 2])
|
550 |
if not st.session_state.authenticated:
|
551 |
with cols[1]:
|
552 |
+
with st.form("login_form"):
|
553 |
+
password = st.text_input("Password", type="password")
|
554 |
+
submit_button = st.form_submit_button("Login", use_container_width=True)
|
555 |
+
|
556 |
+
if submit_button:
|
557 |
+
if password == PASSWORD:
|
558 |
+
st.session_state.authenticated = True
|
559 |
+
st.success("Logged in successfully!")
|
560 |
+
st.rerun()
|
561 |
+
else:
|
562 |
+
st.error("Invalid credentials")
|
563 |
|
564 |
if st.session_state.authenticated:
|
565 |
+
if "responses_collected" not in st.session_state:
|
566 |
+
st.session_state["responses_collected"] = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
567 |
# Initialize session state for collecting responses.
|
568 |
if "responses" not in st.session_state:
|
569 |
+
st.session_state.responses = defaultdict(str)
|
570 |
+
# Initialize session state for token usage.
|
571 |
+
if "input_token_usage" not in st.session_state:
|
572 |
+
st.session_state["input_token_usage"] = defaultdict(int)
|
573 |
+
if "output_token_usage" not in st.session_state:
|
574 |
+
st.session_state["output_token_usage"] = defaultdict(int)
|
575 |
+
if "selected_models" not in st.session_state:
|
576 |
+
st.session_state["selected_models"] = []
|
577 |
+
if "selected_aggregator" not in st.session_state:
|
578 |
+
st.session_state["selected_aggregator"] = None
|
579 |
+
|
580 |
+
with st.form(key="prompt_form"):
|
581 |
+
st.markdown("#### LLM Council Member Selection")
|
582 |
+
|
583 |
+
# Council and aggregator selection
|
584 |
+
selected_models = llm_council_selector()
|
585 |
+
selected_aggregator = aggregator_selector()
|
586 |
+
|
587 |
+
# Prompt input and submission form
|
588 |
+
st.markdown("#### Enter your prompt")
|
589 |
+
_, center_column, _ = st.columns([3, 5, 3])
|
590 |
+
with center_column:
|
591 |
+
user_prompt = st.text_area(
|
592 |
+
"Enter your prompt",
|
593 |
+
value="Say 'Hello World'",
|
594 |
+
key="user_prompt",
|
595 |
+
label_visibility="hidden",
|
596 |
+
)
|
597 |
+
submit_button = st.form_submit_button(
|
598 |
+
"Submit", use_container_width=True
|
599 |
+
)
|
600 |
|
601 |
+
if submit_button:
|
602 |
st.markdown("#### Responses")
|
603 |
|
604 |
+
# Udpate state.
|
605 |
+
st.session_state.selected_models = selected_models
|
606 |
+
st.session_state.selected_aggregator = selected_aggregator
|
607 |
+
|
608 |
+
# Render the chats.
|
609 |
response_columns = st.columns(3)
|
610 |
|
611 |
selected_models_to_streamlit_column_map = {
|
|
|
613 |
}
|
614 |
|
615 |
# Fetching and streaming responses from each selected model
|
616 |
+
for selected_model in st.session_state.selected_models:
|
617 |
with selected_models_to_streamlit_column_map[selected_model]:
|
618 |
st.write(get_ui_friendly_name(selected_model))
|
619 |
with st.chat_message(
|
|
|
632 |
user_prompt=user_prompt, llms=selected_models
|
633 |
)
|
634 |
|
|
|
|
|
|
|
635 |
# Fetching and streaming response from the aggregator
|
636 |
+
st.write(f"{get_ui_friendly_name(selected_aggregator)}")
|
637 |
with st.chat_message(
|
638 |
selected_aggregator,
|
639 |
avatar="img/council_icon.png",
|
|
|
647 |
message_placeholder.write_stream(aggregator_stream)
|
648 |
)
|
649 |
|
650 |
+
st.session_state.responses_collected = True
|
651 |
+
|
652 |
+
# Render chats generally?
|
653 |
+
if st.session_state.responses and not submit_button:
|
654 |
+
st.markdown("#### Responses")
|
655 |
+
|
656 |
+
response_columns = st.columns(3)
|
657 |
+
selected_models_to_streamlit_column_map = {
|
658 |
+
model: response_columns[i]
|
659 |
+
for i, model in enumerate(st.session_state.selected_models)
|
660 |
+
}
|
661 |
+
for response_model, response in st.session_state.responses.items():
|
662 |
+
st_column = selected_models_to_streamlit_column_map.get(
|
663 |
+
response_model, response_columns[0]
|
664 |
+
)
|
665 |
+
with st_column.chat_message(
|
666 |
+
response_model,
|
667 |
+
avatar=get_llm_avatar(response_model),
|
668 |
+
):
|
669 |
+
st.write(get_ui_friendly_name(response_model))
|
670 |
+
st.write(response)
|
671 |
|
672 |
# Judging.
|
673 |
+
if st.session_state.responses_collected:
|
674 |
+
st.markdown("#### Judging Configuration")
|
675 |
|
676 |
+
# Choose the type of assessment
|
677 |
+
assessment_type = st.radio(
|
678 |
+
"Select the type of assessment",
|
679 |
+
options=["Direct Assessment", "Pairwise Comparison"],
|
680 |
+
)
|
681 |
|
682 |
+
_, center_column, _ = st.columns([3, 5, 3])
|
683 |
|
684 |
+
# Depending on the assessment type, render different forms
|
685 |
+
if assessment_type == "Direct Assessment":
|
686 |
|
687 |
+
# Initialize session state for direct assessment.
|
688 |
+
if "direct_assessment_overall_score" not in st.session_state:
|
689 |
+
st.session_state["direct_assessment_overall_score"] = {}
|
690 |
+
if "direct_assessment_judging_df" not in st.session_state:
|
691 |
+
st.session_state["direct_assessment_judging_df"] = {}
|
692 |
+
for response_model in selected_models:
|
693 |
+
st.session_state["direct_assessment_judging_df"][
|
694 |
+
response_model
|
695 |
+
] = {}
|
696 |
+
# aggregator model
|
697 |
st.session_state["direct_assessment_judging_df"][
|
698 |
+
"agg__" + selected_aggregator
|
699 |
] = {}
|
700 |
+
if "direct_assessment_judging_responses" not in st.session_state:
|
701 |
+
st.session_state["direct_assessment_judging_responses"] = {}
|
702 |
+
for response_model in selected_models:
|
703 |
+
st.session_state["direct_assessment_judging_responses"][
|
704 |
+
response_model
|
705 |
+
] = {}
|
706 |
+
# aggregator model
|
707 |
st.session_state["direct_assessment_judging_responses"][
|
708 |
+
"agg__" + selected_aggregator
|
709 |
] = {}
|
710 |
+
if "direct_assessment_overall_scores" not in st.session_state:
|
711 |
+
st.session_state["direct_assessment_overall_scores"] = {}
|
712 |
+
for response_model in selected_models:
|
713 |
+
st.session_state["direct_assessment_overall_scores"][
|
714 |
+
response_model
|
715 |
+
] = {}
|
|
|
716 |
st.session_state["direct_assessment_overall_scores"][
|
717 |
+
"agg__" + selected_aggregator
|
718 |
] = {}
|
719 |
+
if "judging_status" not in st.session_state:
|
720 |
+
st.session_state["judging_status"] = "incomplete"
|
721 |
+
|
722 |
+
# Direct assessment prompt.
|
723 |
+
with center_column.expander("Direct Assessment Prompt"):
|
724 |
+
direct_assessment_prompt = st.text_area(
|
725 |
+
"Prompt for the Direct Assessment",
|
726 |
+
value=get_default_direct_assessment_prompt(
|
727 |
+
user_prompt=user_prompt
|
728 |
+
),
|
729 |
+
height=500,
|
730 |
+
key="direct_assessment_prompt",
|
731 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
732 |
|
733 |
+
# TODO: Add option to edit criteria list with a basic text field.
|
734 |
+
criteria_list = DEFAULT_DIRECT_ASSESSMENT_CRITERIA_LIST
|
735 |
+
|
736 |
+
# Create DirectAssessment object when form is submitted
|
737 |
+
if center_column.button(
|
738 |
+
"Submit Direct Assessment", use_container_width=True
|
739 |
+
):
|
740 |
+
|
741 |
+
# Render the chats.
|
742 |
+
response_columns = st.columns(3)
|
743 |
+
selected_models_to_streamlit_column_map = {
|
744 |
+
model: response_columns[i]
|
745 |
+
for i, model in enumerate(selected_models)
|
746 |
+
}
|
747 |
+
for response_model, response in st.session_state[
|
748 |
+
"responses"
|
749 |
+
].items():
|
750 |
+
st_column = selected_models_to_streamlit_column_map.get(
|
751 |
+
response_model, response_columns[0]
|
752 |
+
)
|
753 |
+
with st_column:
|
754 |
+
with st.chat_message(
|
755 |
+
get_ui_friendly_name(response_model),
|
756 |
+
avatar=get_llm_avatar(response_model),
|
757 |
+
):
|
758 |
+
st.write(get_ui_friendly_name(response_model))
|
759 |
+
st.write(response)
|
760 |
|
761 |
+
# Submit direct asssessment.
|
762 |
+
responses_for_judging = st.session_state["responses"]
|
763 |
|
764 |
+
response_judging_columns = st.columns(3)
|
765 |
|
766 |
+
responses_for_judging_to_streamlit_column_map = {
|
767 |
+
model: response_judging_columns[i % 3]
|
768 |
+
for i, model in enumerate(responses_for_judging.keys())
|
769 |
+
}
|
770 |
|
771 |
+
# Get judging responses.
|
772 |
+
for response_model, response in responses_for_judging.items():
|
773 |
|
774 |
+
st_column = responses_for_judging_to_streamlit_column_map[
|
775 |
+
response_model
|
776 |
+
]
|
777 |
|
778 |
+
with st_column:
|
779 |
+
st.write(
|
780 |
+
f"Judging for {get_ui_friendly_name(response_model)}"
|
781 |
+
)
|
782 |
+
judging_prompt = get_direct_assessment_prompt(
|
783 |
+
direct_assessment_prompt=direct_assessment_prompt,
|
784 |
+
user_prompt=user_prompt,
|
785 |
+
response=response,
|
786 |
+
criteria_list=criteria_list,
|
787 |
+
options=SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
|
788 |
+
)
|
|
|
|
|
|
|
|
|
789 |
|
790 |
+
with st.expander("Final Judging Prompt"):
|
791 |
+
st.code(judging_prompt)
|
792 |
|
793 |
+
for judging_model in selected_models:
|
794 |
+
with st.expander(
|
795 |
+
get_ui_friendly_name(judging_model), expanded=False
|
|
|
|
|
|
|
|
|
796 |
):
|
797 |
+
with st.chat_message(
|
798 |
+
judging_model,
|
799 |
+
avatar=PROVIDER_TO_AVATAR_MAP[judging_model],
|
800 |
+
):
|
801 |
+
message_placeholder = st.empty()
|
802 |
+
judging_stream = get_llm_response_stream(
|
803 |
+
judging_model, judging_prompt
|
804 |
+
)
|
805 |
+
st.session_state[
|
806 |
+
"direct_assessment_judging_responses"
|
807 |
+
][response_model][
|
808 |
+
judging_model
|
809 |
+
] = message_placeholder.write_stream(
|
810 |
+
judging_stream
|
811 |
+
)
|
812 |
+
# When all of the judging is finished for the given response, get the actual
|
813 |
+
# values, parsed.
|
814 |
+
# TODO.
|
815 |
+
judging_responses = st.session_state[
|
816 |
+
"direct_assessment_judging_responses"
|
817 |
+
][response_model]
|
818 |
+
|
819 |
+
if not judging_responses:
|
820 |
+
st.error(f"No judging responses for {response_model}")
|
821 |
+
quit()
|
822 |
+
parse_judging_response_prompt = (
|
823 |
+
get_parse_judging_response_for_direct_assessment_prompt(
|
824 |
+
judging_responses,
|
825 |
+
criteria_list,
|
826 |
+
SEVEN_POINT_DIRECT_ASSESSMENT_OPTIONS,
|
827 |
+
)
|
828 |
+
)
|
829 |
+
# Issue the prompt to openai mini with structured outputs
|
830 |
+
parsed_judging_responses = parse_judging_responses(
|
831 |
+
parse_judging_response_prompt, judging_responses
|
832 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
833 |
|
|
|
834 |
st.session_state["direct_assessment_judging_df"][
|
835 |
response_model
|
836 |
+
] = create_dataframe_for_direct_assessment_judging_response(
|
837 |
+
parsed_judging_responses
|
838 |
+
)
|
839 |
|
840 |
+
plot_criteria_scores(
|
841 |
+
st.session_state["direct_assessment_judging_df"][
|
842 |
+
response_model
|
843 |
+
]
|
844 |
+
)
|
|
|
|
|
845 |
|
846 |
+
# Find the overall score by finding the overall score for each judge, and then averaging
|
847 |
+
# over all judges.
|
848 |
+
plot_per_judge_overall_scores(
|
849 |
+
st.session_state["direct_assessment_judging_df"][
|
850 |
+
response_model
|
851 |
+
]
|
852 |
+
)
|
|
|
|
|
853 |
|
854 |
+
grouped = (
|
855 |
+
st.session_state["direct_assessment_judging_df"][
|
856 |
+
response_model
|
857 |
+
]
|
858 |
+
.groupby(["judging_model"])
|
859 |
+
.agg({"score": ["mean"]})
|
860 |
+
.reset_index()
|
861 |
+
)
|
862 |
+
grouped.columns = ["judging_model", "overall_score"]
|
863 |
+
|
864 |
+
# Save the overall scores to the session state.
|
865 |
+
for record in grouped.to_dict(orient="records"):
|
866 |
+
st.session_state["direct_assessment_overall_scores"][
|
867 |
+
response_model
|
868 |
+
][record["judging_model"]] = record["overall_score"]
|
869 |
+
|
870 |
+
overall_score = grouped["overall_score"].mean()
|
871 |
+
controversy = grouped["overall_score"].std()
|
872 |
+
st.write(f"Overall Score: {overall_score:.2f}")
|
873 |
+
st.write(f"Controversy: {controversy:.2f}")
|
874 |
+
|
875 |
+
st.session_state["judging_status"] = "complete"
|
876 |
+
|
877 |
+
# Judging is complete.
|
878 |
+
# The session state now contains the overall scores for each response from each judge.
|
879 |
+
if st.session_state["judging_status"] == "complete":
|
880 |
+
st.write("#### Results")
|
881 |
+
|
882 |
+
overall_scores_df_raw = pd.DataFrame(
|
883 |
+
st.session_state["direct_assessment_overall_scores"]
|
884 |
+
).reset_index()
|
885 |
+
|
886 |
+
overall_scores_df = pd.melt(
|
887 |
+
overall_scores_df_raw,
|
888 |
+
id_vars=["index"],
|
889 |
+
var_name="response_model",
|
890 |
+
value_name="score",
|
891 |
+
).rename(columns={"index": "judging_model"})
|
892 |
+
|
893 |
+
# Print the overall winner.
|
894 |
+
overall_winner = overall_scores_df.loc[
|
895 |
+
overall_scores_df["score"].idxmax()
|
896 |
+
]
|
897 |
|
898 |
+
st.write(
|
899 |
+
f"**Overall Winner:** {get_ui_friendly_name(overall_winner['response_model'])}"
|
900 |
+
)
|
901 |
+
# Find how much the standard deviation overlaps with other models.
|
902 |
+
# Calculate separability.
|
903 |
+
# TODO.
|
904 |
+
st.write(f"**Confidence:** {overall_winner['score']:.2f}")
|
905 |
+
|
906 |
+
left_column, right_column = st.columns([1, 1])
|
907 |
+
with left_column:
|
908 |
+
plot_overall_scores(overall_scores_df)
|
909 |
+
|
910 |
+
with right_column:
|
911 |
+
# All overall scores.
|
912 |
+
overall_scores_df = overall_scores_df[
|
913 |
+
["response_model", "judging_model", "score"]
|
914 |
+
]
|
915 |
+
overall_scores_df["response_model"] = overall_scores_df[
|
916 |
+
"response_model"
|
917 |
+
].apply(get_ui_friendly_name)
|
918 |
+
overall_scores_df["judging_model"] = overall_scores_df[
|
919 |
+
"judging_model"
|
920 |
+
].apply(get_ui_friendly_name)
|
921 |
+
|
922 |
+
with st.expander("Overall scores from all judges"):
|
923 |
+
st.dataframe(overall_scores_df)
|
924 |
+
|
925 |
+
# All criteria scores.
|
926 |
+
with right_column:
|
927 |
+
all_scores_df = pd.DataFrame()
|
928 |
+
for response_model, score_df in st.session_state[
|
929 |
+
"direct_assessment_judging_df"
|
930 |
+
].items():
|
931 |
+
score_df["response_model"] = response_model
|
932 |
+
all_scores_df = pd.concat([all_scores_df, score_df])
|
933 |
+
all_scores_df = all_scores_df.reset_index()
|
934 |
+
all_scores_df = all_scores_df.drop(columns="index")
|
935 |
+
|
936 |
+
# Reorder the columns
|
937 |
+
all_scores_df = all_scores_df[
|
938 |
+
[
|
939 |
+
"response_model",
|
940 |
+
"judging_model",
|
941 |
+
"criteria",
|
942 |
+
"score",
|
943 |
+
"explanation",
|
944 |
+
]
|
945 |
+
]
|
946 |
+
all_scores_df["response_model"] = all_scores_df[
|
947 |
+
"response_model"
|
948 |
+
].apply(get_ui_friendly_name)
|
949 |
+
all_scores_df["judging_model"] = all_scores_df[
|
950 |
+
"judging_model"
|
951 |
+
].apply(get_ui_friendly_name)
|
952 |
+
|
953 |
+
with st.expander(
|
954 |
+
"Criteria-specific scores and explanations from all judges"
|
955 |
+
):
|
956 |
+
st.dataframe(all_scores_df)
|
957 |
+
|
958 |
+
elif assessment_type == "Pairwise Comparison":
|
959 |
+
pass
|
960 |
+
|
961 |
+
# Token usage.
|
962 |
+
with st.expander("Token Usage"):
|
963 |
+
st.write("Input tokens used.")
|
964 |
+
st.write(st.session_state.input_token_usage)
|
965 |
+
st.write(
|
966 |
+
f"Input Tokens Total: {sum(st.session_state.input_token_usage.values())}"
|
967 |
+
)
|
968 |
+
st.write("Output tokens used.")
|
969 |
+
st.write(st.session_state.output_token_usage)
|
970 |
+
st.write(
|
971 |
+
f"Output Tokens Total: {sum(st.session_state.output_token_usage.values())}"
|
972 |
+
)
|
973 |
|
974 |
else:
|
975 |
with cols[1]:
|
constants.py
CHANGED
@@ -1,18 +1,42 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
PROVIDER_TO_AVATAR_MAP = {
|
18 |
"openai://gpt-4o-mini": "",
|
@@ -34,9 +58,17 @@ LLM_TO_UI_NAME_MAP = {
|
|
34 |
"anthropic://claude-3-haiku-20240307": "Claude 3 Haiku",
|
35 |
}
|
36 |
|
37 |
-
|
38 |
-
AGGREGATORS = ["together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"]
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
# Fix the aggregator step.
|
42 |
# Add a judging step.
|
|
|
1 |
+
import os
|
2 |
+
import dotenv
|
3 |
+
|
4 |
+
dotenv.load_dotenv()
|
5 |
+
|
6 |
+
|
7 |
+
if os.getenv("DEBUG_MODE") == "True":
|
8 |
+
LLM_COUNCIL_MEMBERS = {
|
9 |
+
"Smalls": [
|
10 |
+
"together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
11 |
+
"together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
12 |
+
# "anthropic://claude-3-haiku-20240307",
|
13 |
+
],
|
14 |
+
"Flagships": [
|
15 |
+
"together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
16 |
+
"together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
17 |
+
"anthropic://claude-3-haiku-20240307",
|
18 |
+
],
|
19 |
+
}
|
20 |
+
else:
|
21 |
+
LLM_COUNCIL_MEMBERS = {
|
22 |
+
"Smalls": [
|
23 |
+
"openai://gpt-4o-mini",
|
24 |
+
"together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
25 |
+
"together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
26 |
+
"vertex://gemini-1.5-flash-001",
|
27 |
+
"anthropic://claude-3-haiku-20240307",
|
28 |
+
],
|
29 |
+
"Flagships": [
|
30 |
+
"openai://gpt-4o",
|
31 |
+
"together://meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
32 |
+
"vertex://gemini-1.5-pro-002",
|
33 |
+
"anthropic://claude-3-5-sonnet",
|
34 |
+
],
|
35 |
+
"OpenAI": [
|
36 |
+
"openai://gpt-4o",
|
37 |
+
"openai://gpt-4o-mini",
|
38 |
+
],
|
39 |
+
}
|
40 |
|
41 |
PROVIDER_TO_AVATAR_MAP = {
|
42 |
"openai://gpt-4o-mini": "",
|
|
|
58 |
"anthropic://claude-3-haiku-20240307": "Claude 3 Haiku",
|
59 |
}
|
60 |
|
61 |
+
if os.getenv("DEBUG_MODE") == "True":
|
62 |
+
AGGREGATORS = ["together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"]
|
63 |
+
else:
|
64 |
+
AGGREGATORS = [
|
65 |
+
"anthropic://claude-3-haiku-20240307",
|
66 |
+
"together://meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
67 |
+
"together://meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
68 |
+
"together://meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
69 |
+
"openai://gpt-4o",
|
70 |
+
"openai://gpt-4o-mini",
|
71 |
+
]
|
72 |
|
73 |
# Fix the aggregator step.
|
74 |
# Add a judging step.
|
img/qwen.webp
ADDED