Omost / app.py
layerdiffusion
fix some queue problems
c62829f
raw
history blame
14.9 kB
import os
import spaces
os.environ['HF_HOME'] = os.path.join(os.path.dirname(__file__), 'hf_download')
HF_TOKEN = os.environ['hf_token'] if 'hf_token' in os.environ else None
import uuid
import time
import torch
import numpy as np
import gradio as gr
import tempfile
gradio_temp_dir = os.path.join(tempfile.gettempdir(), 'gradio')
os.makedirs(gradio_temp_dir, exist_ok=True)
from threading import Thread
# Phi3 Hijack
from transformers.models.phi3.modeling_phi3 import Phi3PreTrainedModel
Phi3PreTrainedModel._supports_sdpa = True
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
from lib_omost.pipeline import StableDiffusionXLOmostPipeline
from chat_interface import ChatInterface
from transformers.generation.stopping_criteria import StoppingCriteriaList
import lib_omost.canvas as omost_canvas
# SDXL
sdxl_name = 'SG161222/RealVisXL_V4.0'
# sdxl_name = 'stabilityai/stable-diffusion-xl-base-1.0'
tokenizer = CLIPTokenizer.from_pretrained(
sdxl_name, subfolder="tokenizer")
tokenizer_2 = CLIPTokenizer.from_pretrained(
sdxl_name, subfolder="tokenizer_2")
text_encoder = CLIPTextModel.from_pretrained(
sdxl_name, subfolder="text_encoder", torch_dtype=torch.float16, variant="fp16", device_map="auto")
text_encoder_2 = CLIPTextModel.from_pretrained(
sdxl_name, subfolder="text_encoder_2", torch_dtype=torch.float16, variant="fp16", device_map="auto")
vae = AutoencoderKL.from_pretrained(
sdxl_name, subfolder="vae", torch_dtype=torch.bfloat16, variant="fp16", device_map="auto") # bfloat16 vae
unet = UNet2DConditionModel.from_pretrained(
sdxl_name, subfolder="unet", torch_dtype=torch.float16, variant="fp16", device_map="auto")
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
pipeline = StableDiffusionXLOmostPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
unet=unet,
scheduler=None, # We completely give up diffusers sampling system and use A1111's method
)
# LLM
# model_name = 'lllyasviel/omost-phi-3-mini-128k'
llm_name = 'lllyasviel/omost-llama-3-8b'
# model_name = 'lllyasviel/omost-dolphin-2.9-llama3-8b'
llm_model = AutoModelForCausalLM.from_pretrained(
llm_name,
torch_dtype="auto",
token=HF_TOKEN,
device_map="auto",
trust_remote_code=True,
)
llm_tokenizer = AutoTokenizer.from_pretrained(
llm_name,
token=HF_TOKEN
)
@torch.inference_mode()
def pytorch2numpy(imgs):
results = []
for x in imgs:
y = x.movedim(0, -1)
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
results.append(y)
return results
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
h = h.movedim(-1, 1)
return h
def resize_without_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(resized_image)
@spaces.GPU(duration=120)
@torch.inference_mode()
def chat_fn(message: str, history: list, seed:int, temperature: float, top_p: float, max_new_tokens: int) -> str:
print('Chat begin:', message)
time_stamp = time.time()
np.random.seed(int(seed))
torch.manual_seed(int(seed))
conversation = [{"role": "system", "content": omost_canvas.system_prompt}]
for user, assistant in history:
if isinstance(user, str) and isinstance(assistant, str):
if len(user) > 0 and len(assistant) > 0:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = llm_tokenizer.apply_chat_template(
conversation, return_tensors="pt", add_generation_prompt=True).to(llm_model.device)
streamer = TextIteratorStreamer(llm_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
def interactive_stopping_criteria(*args, **kwargs) -> bool:
if getattr(streamer, 'user_interrupted', False):
print('User stopped generation:', message)
return True
else:
return False
stopping_criteria = StoppingCriteriaList([interactive_stopping_criteria])
def interrupter():
streamer.user_interrupted = True
return
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
stopping_criteria=stopping_criteria,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
)
if temperature == 0:
generate_kwargs['do_sample'] = False
Thread(target=llm_model.generate, kwargs=generate_kwargs).start()
outputs = []
for text in streamer:
outputs.append(text)
# print(outputs)
yield "".join(outputs), None
print(f'Chat end at {time.time() - time_stamp:.2f} seconds:', message)
return
@torch.inference_mode()
def post_chat(history):
canvas_outputs = None
try:
if history:
history = [(user, assistant) for user, assistant in history if isinstance(user, str) and isinstance(assistant, str)]
last_assistant = history[-1][1] if len(history) > 0 else None
canvas = omost_canvas.Canvas.from_bot_response(last_assistant)
canvas_outputs = canvas.process()
except Exception as e:
print('Last assistant response is not valid canvas:', e)
return canvas_outputs, gr.update(visible=canvas_outputs is not None), gr.update(interactive=len(history) > 0)
@spaces.GPU
@torch.inference_mode()
def diffusion_fn(chatbot, canvas_outputs, num_samples, seed, image_width, image_height,
highres_scale, steps, cfg, highres_steps, highres_denoise, negative_prompt):
use_initial_latent = False
eps = 0.05
image_width, image_height = int(image_width // 64) * 64, int(image_height // 64) * 64
rng = torch.Generator(unet.device).manual_seed(seed)
positive_cond, positive_pooler, negative_cond, negative_pooler = pipeline.all_conds_from_canvas(canvas_outputs, negative_prompt)
if use_initial_latent:
initial_latent = torch.from_numpy(canvas_outputs['initial_latent'])[None].movedim(-1, 1) / 127.5 - 1.0
initial_latent_blur = 40
initial_latent = torch.nn.functional.avg_pool2d(
torch.nn.functional.pad(initial_latent, (initial_latent_blur,) * 4, mode='reflect'),
kernel_size=(initial_latent_blur * 2 + 1,) * 2, stride=(1, 1))
initial_latent = torch.nn.functional.interpolate(initial_latent, (image_height, image_width))
initial_latent = initial_latent.to(dtype=vae.dtype, device=vae.device)
initial_latent = vae.encode(initial_latent).latent_dist.mode() * vae.config.scaling_factor
else:
initial_latent = torch.zeros(size=(num_samples, 4, image_height // 8, image_width // 8), dtype=torch.float32)
initial_latent = initial_latent.to(dtype=unet.dtype, device=unet.device)
latents = pipeline(
initial_latent=initial_latent,
strength=1.0,
num_inference_steps=int(steps),
batch_size=num_samples,
prompt_embeds=positive_cond,
negative_prompt_embeds=negative_cond,
pooled_prompt_embeds=positive_pooler,
negative_pooled_prompt_embeds=negative_pooler,
generator=rng,
guidance_scale=float(cfg),
).images
latents = latents.to(dtype=vae.dtype, device=vae.device) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
B, C, H, W = pixels.shape
pixels = pytorch2numpy(pixels)
if highres_scale > 1.0 + eps:
pixels = [
resize_without_crop(
image=p,
target_width=int(round(W * highres_scale / 64.0) * 64),
target_height=int(round(H * highres_scale / 64.0) * 64)
) for p in pixels
]
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
latents = latents.to(device=unet.device, dtype=unet.dtype)
latents = pipeline(
initial_latent=latents,
strength=highres_denoise,
num_inference_steps=highres_steps,
batch_size=num_samples,
prompt_embeds=positive_cond,
negative_prompt_embeds=negative_cond,
pooled_prompt_embeds=positive_pooler,
negative_pooled_prompt_embeds=negative_pooler,
generator=rng,
guidance_scale=float(cfg),
).images
latents = latents.to(dtype=vae.dtype, device=vae.device) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels)
for i in range(len(pixels)):
unique_hex = uuid.uuid4().hex
image_path = os.path.join(gradio_temp_dir, f"{unique_hex}_{i}.png")
image = Image.fromarray(pixels[i])
image.save(image_path)
chatbot = chatbot + [(None, (image_path, 'image'))]
return chatbot
css = '''
code {white-space: pre-wrap !important;}
.gradio-container {max-width: none !important;}
.outer_parent {flex: 1;}
.inner_parent {flex: 1;}
footer {display: none !important; visibility: hidden !important;}
.translucent {display: none !important; visibility: hidden !important;}
'''
from gradio.themes.utils import colors
with gr.Blocks(
fill_height=True, css=css,
theme=gr.themes.Default(primary_hue=colors.blue, secondary_hue=colors.cyan, neutral_hue=colors.gray)
) as demo:
with gr.Row(elem_classes='outer_parent'):
with gr.Column(scale=25):
with gr.Row():
clear_btn = gr.Button("➕ New Chat", variant="secondary", size="sm", min_width=60)
retry_btn = gr.Button("Retry", variant="secondary", size="sm", min_width=60, visible=False)
undo_btn = gr.Button("✏️️ Edit Last Input", variant="secondary", size="sm", min_width=60, interactive=False)
seed = gr.Number(label="Random Seed", value=123456, precision=0)
with gr.Accordion(open=True, label='Language Model'):
with gr.Group():
with gr.Row():
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.01,
value=0.6,
label="Temperature")
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.9,
label="Top P")
max_new_tokens = gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=4096,
label="Max New Tokens")
with gr.Accordion(open=True, label='Image Diffusion Model'):
with gr.Group():
with gr.Row():
image_width = gr.Slider(label="Image Width", minimum=256, maximum=2048, value=896, step=64)
image_height = gr.Slider(label="Image Height", minimum=256, maximum=2048, value=1152, step=64)
with gr.Row():
num_samples = gr.Slider(label="Image Number", minimum=1, maximum=12, value=1, step=1)
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=100, value=25, step=1)
with gr.Accordion(open=False, label='Advanced'):
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=5.0, step=0.01)
highres_scale = gr.Slider(label="HR-fix Scale (\"1\" is disabled)", minimum=1.0, maximum=2.0, value=1.0, step=0.01)
highres_steps = gr.Slider(label="Highres Fix Steps", minimum=1, maximum=100, value=20, step=1)
highres_denoise = gr.Slider(label="Highres Fix Denoise", minimum=0.1, maximum=1.0, value=0.4, step=0.01)
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality')
render_button = gr.Button("Render the Image!", size='lg', variant="primary", visible=False)
examples = gr.Dataset(
samples=[
['generate an image of the fierce battle of warriors and the dragon'],
['change the dragon to a dinosaur']
],
components=[gr.Textbox(visible=False)],
label='Quick Prompts'
)
with gr.Row():
gr.Markdown("Omost: converting LLM's coding capability to image compositing capability.")
with gr.Row():
gr.Markdown("Local version (8GB VRAM): https://github.com/lllyasviel/Omost")
# with gr.Row():
# gr.Markdown("Hint: You can [duplicate this space](https://huggingface.co/spaces/lllyasviel/Omost?duplicate=true) to your private account to bypass the waiting queue.")
with gr.Column(scale=75, elem_classes='inner_parent'):
canvas_state = gr.State(None)
chatbot = gr.Chatbot(label='Omost', scale=1, show_copy_button=True, layout="panel", render=False)
chatInterface = ChatInterface(
fn=chat_fn,
post_fn=post_chat,
post_fn_kwargs=dict(inputs=[chatbot], outputs=[canvas_state, render_button, undo_btn]),
pre_fn=lambda: gr.update(visible=False),
pre_fn_kwargs=dict(outputs=[render_button]),
chatbot=chatbot,
retry_btn=retry_btn,
undo_btn=undo_btn,
clear_btn=clear_btn,
additional_inputs=[seed, temperature, top_p, max_new_tokens],
examples=examples,
show_stop_button=False
)
render_button.click(
fn=diffusion_fn, inputs=[
chatInterface.chatbot, canvas_state,
num_samples, seed, image_width, image_height, highres_scale,
steps, cfg, highres_steps, highres_denoise, n_prompt
], outputs=[chatInterface.chatbot]).then(
fn=lambda x: x, inputs=[
chatInterface.chatbot
], outputs=[chatInterface.chatbot_state])
if __name__ == "__main__":
demo.queue().launch()